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ABSTRACT 

In this paper, we will study some essential analytic properties of the "spin" 

L-function on the symplectic group GSp(6) (which is associated with the 

eight-dimensional spin representation of the L-group Gspin(7, C)), namely, 

uniqueness of a bilinear form on an irreducible admissible representation 

of GSp(6) • GL(2), local functional equation, and meromorphic contin- 

uation, non-vanishing properties at non-axchimedean places as well as at 

archimedean places. 

Consequently, we will determine the location of the possible poles of the 

global spin L-function of a generic automorphic cuspidal representation of 

OSp(6). 
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0. I n t r o d u c t i o n  

We will prove here some essential analytic properties of the spin L-functions on 

the symplectic group GSp(6), which is associated with the eight-dimensional 

spin representation of the L-group Gspin(7, C). 

At non-archimedean places, we will prove propositions about uniqueness of 

a bilinear form on an irreducible admissible representation of GSp(6) x GL(2), 

local functional equation, meromorphic continuation and non-vanishing property. 

At archimedean places, we will also prove some analogous propositions about 

meromorphic continuation and a non-vanishing property. 

Consequently, we will determine the location of the possible poles of the global 

spin L-function of a generic automorphic cuspidal representation 7r of GSp(6). 

We define this L-function as an Euler product: 

Ls(s, 7r, spin) = H Lv(s, lrv, spin), 
yes 

where S is a finite set of places (including archimedean places) such that each 

place v ~ S is unramified. 

For each place v ~ S, let O~ be its ring of integers. This ring has a unique 

maximal ideal p,.  Then the cardinality of the residue field is q~ = IOv/p~l. 

The connected L-group LG~ of GSp(6, F)(6) is Gspin(7, C) which has an 

irreducible 23-dimensional spin representation rv: Gspin(7, C) ~ GL(8, C). 

By the Satake isomorphism, there is a bijection between 7rv and LG~ 

conjugacy class tv in LGv. Then r,(tv) has eight eigenvalues of the form av,lav,2av, 3 . + 1  +1 +1 
Then the local L-function (where v r S) is defined by 

L,(s,~rv, spin)= YI (1 - av,lav,2av,3.qv=t=l +1 +1 -~,-l=det[is_r~(t~)qj~]-I 
eight factors 

where Is is the 8 x 8 identity matrix. 

In the first chapter, we will deal with non-archimedean places. Let F be 

a non-archimedean local field, let ~r: GSp(6,F)  ~ End(V,~) an irreducible, 
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smooth and generic cuspidal representation of GSp(6, F) and let p: GL(2, F) 

;.~aL(2,~)~, ~ obtained by nonnormalized in- End(Wv) be the representation .... B2 ~B~J 

duetion, where ~s2 is a modular character of the Borel subgroup B2 of GL(2, F). 

Theorem 1 will show the uniqueness of a bilinear form B(v, w) on a represen- 

tation of GSp(6, F) • GL(2, F) which satisfies 

B 7r I g v ,p(g)w = r  

9 

for all 9 in GL(2, F), v E V~ and w E W o, where r is some fixed non-trivial 

unitary additive character of F, and the matrices I,  X ,  X ~, Y are 2 x 2 matrices 

whose entries are in F and I is the identity matrix. 

Now let 

U1 = ~l.ul E GSp(6, F)I ul = I bt 
bl 

where {(, ,) ,} b l E B ~ =  ,1 EGL(2 ,F  . 

Let ~p(X) = ~bo(trace(X)) and X be the restriction on B~ of the modular character 

Xo -= ~B~. of the Borel subgroup B~. 

Let P6 be a subgroup consisting of matrices of the form 

GSp(4,F) 

in pl,~ which is the standard maximal parabolic subgroup of the symplectic group 

GSp(6, F) whose Levi factor is isomorphic to GL(1, F) x GSp(4, F). These 

subgroups will be described explicitly in the next section�9 

Thus the problem can be reduced to proving that: 

For 7r an irreducible, smoo~h and generic representation of GSp(6, F), the 
�9 P 6  dimension of the space Homp~ (rp~, mdvl (~b.);)) is at most one. 

The essential tools used are 3acquet functors and their adjoint functors. We 

will state and prove some important properties of these functors which are similar 

to those in proposition 5.12 in the paper of J. Berstein and A. Zelevinsky [B,Z]. 
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These functors help to reduce from working on the subgroup P6, through 

several stages, to working on the symplectic subgroups of lower dimension and 

their parabolic subgroups. 

The analysis here is unusual because we will do the above descent through a 

series of parabolic subgroups similar to the "derivatives" of Berstein-Zelevinsky 

which are emphasized in [G,PS] but, in contrast with their work, we will use 

parabolic subgroups with non-abelian subgroups. For this reason, each descent 

will be performed in two stages, except the final descent, as shown in the following 

chart. 

The chart could give readers a clear view of stages of the double coset calcu- 

lations which will be done in Sections 7 and 8. The notations in this chart may 

not be standard but will not cause any confusion. Please also refer to Section 3. 

P 6  ~--* 7r 

/ \ 
y_L,1 ~j_L,o (Stage 1, in Section 7) 

/ \ 

81 ~" ($4.T6, OL,1) (G4.T6, OL,o) *-~ 80 

ft._K,1 ,TK,o (Stage 2, in Section 7) 

\ 

(G4, OK,o) 4-~ O" o 

/ 

O"1 ~ (P4, eK,1)  
/ \ 

j ,l y ,o 

A1 ~ ($2.T4, AL,I) (G2.T4,  AL,o) ~ Ao 
, /  \ 

/ \ 

/ \ 
Y! y_o 

/ \ 

~1 ~ (Po, ~1) (Go, ~o) ~ ~o 

(Section 8) 

(Section 8) 

(Section 8) 

The reduction in each stage is established by the help of an essential lemma 

which could be considered a version of the Mackey's theorem for the local fields. 
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This allows us to work in the Horn spaces on the set of double cosets instead of 

the Horn spaces of the original subgroups. 

The double cosets calculations show explicitly that there is at most one double 

coset on which the Hom space is nontrivial. That is, the Horn space on the lower- 

dimension subgroup will be carried to the next stage and so on. We then have 

at the final stage the Whittaker model on GL(2, F) which proves our problem. 

One immediate result of Theorem 1 is the local functional equation for the 

p-adic field. Let us recall the definition of the integral Z(s, W, f~) in [B,G]: 

Z(s, W, fs) = H Zv(s, Wv, fs:,), 
~J 

where 

Zv(s, Wv, fs,v) = ( F ,  (2S) 

and 

( II • 

B2,. \  GL 2v F x F~ --'tt I 

I 

x lal'-s.f.,,,(g~) dzdudXadg~, 

1 

-1  

-1  

' / ( ) g~ 
1 , i(g~)-- g. , g. EGL(2,F~). 

g~ 

1 

An identity from Theorem 1 in [B,G] showed that, for almost all places v r S, 

Z,,(s, Wv, fs,~) = L~(s, try, spin). 

PROPOSITION 10.2 (Meromorphic Continuation): Let Fv be a non-archlmedean 

local field whose residue field is of cardinality q. Then the integral Z~(s, W~, fs,v) 

defines a rational function of variable q-*. Hence, particularly, Zv(s, Wv, f,,v) 

has a meromorphic continuation to all s. 

The proof is similar to a result of S. Gelbart and I. Piatetski-Shapiro in 

[G,PS]. They use Bernstein's theorem about analytic continuation of local in- 

tegrals (proved in his letter [Be] to Piatetski-Shapiro in Fall 1985). 
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To establish the local functional equation, we will need to prove another 

property. 

PROPOSITION 10.4 (Non-vanishing property): For any non-archimedean local 

place v, there exist a Whittaker function W ~ E W.~ and a function fo C 
nmB2,v" .GL~v j~B~,~ such that Z.(s, W ~ fjo ) = 1. 

The proof is rather simple. First, we choose the Whittaker function such 

that  the integral does not vanish, by matrix manipulation and using Schwartz 

�9 .GL2 ~ 5~ is a locally constant functions. Then the smooth function f o E lnClB~, ' B~,~ 

function chosen properly. 

We recall the definition of an intertwining operator which will be used in the 

proof of Proposition 10.3. Let Ms,v: ln(1B2,.- .GL 2v {~sB2,v -~ inas2,~'GL 2v ~l-sB2,. be a normal- 

ized intertwining operator defined as 

( M s , v f s , v ) ( g ) = / f s , v ( ( 1 - 1 ) . ( 1  1 ) . g ) d x ,  

F. 

for all f~,~ in Vps. This proves that Vps _~ Vpl_ s (Jacquet-Langlands' theorem). 

This theorem and the above results are sufficient to establish the local 

functional equation below. 

PROPOSITION 10.3 (The local functional equation): Assume that Fv is a non- 

archimedean local field whose residue cardinality is q. Then there exists a 

meromorphic function % (s) such that, for almost all s, 

Z~(s, Wv, f~,~) = %(s).Z.(1 - s, Wv, M~,.fs,~). 

In fact, %(s) is a rational function of q -s. 

In the second chapter, we will deal with archimedean places. Then we will be 

able to determine the locations of the possible poles of the global spin L-function. 

Indeed, we will need some necessary properties of the integral Z(s, Wv, is,v) at 

the archimedean places. 

First, we will prove the following proposition. 

PROPOSITION 11.1 (Meromorphic continuation of Zv (s, Wv, fs,.) at archimedean 
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places): The integral 

f s , . )  = laa Ii (B2,~NK~)\K~ F~ F~ --U 1 

1 

x lals-3.fs,,(lr d zd u d •  

converges for sutticiently large ~(s) and has a meromorphic continuation to all s. 

We refer to the work of H. Jacquet, J. Shalika and Piatetski-Shapiro in [J,PS,S], 

[J,S.1]and [J,S.2], in order to estimate the Whittaker functions. Then the proof 

of the meromorphic continuation part is reduced to a calculus task. 

PROPOSITION 12.1 (Non-vanishing property at archimedean places): Let v be an 

archimedean local place. For any so fixed, there exist a Whittaker function W ~ E  

o �9 ,~L2 ~ ~ such that the meromorphic W~, and a K,-f ini te function f~,, E maB2, ' B2,, 

continuation of  the integral 

w e  u z 1 

(B2,.NK,~)\K. F x F~ --U 1 

1 

8 - 3  o ~ d x x la[ . fs , . (k)  dz du a dk 

does not vanish at s -= So. 

The proof is the same as that of the non-archimedean case, except in the very 

final step to choose the smooth function fv. 

In the real place, we will use the Fourier expansion. In the complex case, we 

will need the Peter-Weyl theorem about matrix coefficients. 

All the information about the integral Z(s, W~, fs) at all places will help to 

show the final result of this paper. 

THEOREM 13.1: Let lr be an irreducible, smooth and generic cuspidal represen- 

tation of the symplectic groups GSp(6, F). The possible poles of the global spin 

L-function Ls(s ,  lr, spin) are only simple poles at s = 0 and s = 1. 

In the proof of this theorem, we used results in Theorem 1 in [B,G]: 
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THEOREM 1 (in [B,G]): The integral Z(s,  W, f~) represents the spin L-function 

in the sense that for almost all places v, the local integral 

Z (s, wv, A.v) = L,,(s,  rv ,  spin). 

Moreover, it has meromorphic continuation to all s, with possible poles at s = 1 

and O, and functional equation 

Z(s,  W, L )  = Z(1 - s, W, M(s)f~). 

Also following from [B,G], we can expect a relationship between the existence 

of a pole of the L-function and the non-vanishing of a certain global period. That 

is: 

The existence of a pole at s = 1 of the global spin L-function Ls(s ,  r ,  spin) is 

equivalent to the non-vanishing of the integral 

Xl 

1 X5 

1 

X2 X3 X , ) ( ) )  
X6 X7 * 
�9 * g 

1 * * g 
1 g 

1 

dx l . . . dx 7 dg 

for some r E V,. 

Our Theorem 13.1 helped to confirm the above relationship. 

A well-known conjecture states that Ls(s ,  7r, spin) will have a pole if and only 

if ~r is a functorial lift from the exceptional group G:. 

(Please do not confuse with the convenient notation G2 which is introduced in 

Section 3.) 

C H A P T E R  I. THE LOCAL FUNCTIONAL EQUATION 

I. The Theorem 

Let F be a non-archimedean, local field. 

Let G S p ( 6 , F )  = {g E GL(6 ,F) Ig . J6 .g  r = #(g).J6, for some scalar/~(g) in FX}, 

where ,]6 = J and J = 1 " 
J 
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of GSp(6, F) which are defined as 

R = ~ t r  e GSp(6,F)I r = I g 

U -- ~(u �9 GSp(6 ,F)I  u = I X b 
I b 

where g �9 GL(2, F); 

and 

I, X, X t, Y E Mat(2, F) = ( 2 • 2 matrices whose entries are in F}, 

For any fixed s, let us denote Xo = ~8 where ~B, is a modular character of B2 

the Borel subgroup B2 of GL(2, F). 
�9 ~GL(2 ,F)  / 

We then define an induced representation of GL(2, F): p - maB2 (Xo), 

p: GL(2, F) ~ End(Wp), where the induction is non-normalized. Here is the 

main theorem of this chapter. 

THEOREM 1: Let 7r: GSp(6,F) ) End(V~) be an irreducible, smooth and 

generic cuspidal representation of GSp(6, F). Then, for almost all s in the com- 

plex plane C, there exists at most one bilinear form, up to a constant multiple, 

B: V~ x Wp ---* C satisfying 

(1.1) B ~ I X g v, p(g)w = ~o(trace(X)) .B(v,  w), 
I g 

for all v E V, and w E Wp, where ~o is some fixed non-trivial unitary additive 

character of F. 

We will give the proof of this theorem in Sections 2-9 of this chapter�9 This 

theorem will help to establish the p-adic local functional equation in Section 10. 

2. The  se tup 

Recalling the definitions of R and U, we have r = I 

a n d  u = I b . Then let ~(X) = ~0o(trace(X)). 
b 
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We can extend the representation p of GL(2, F) to the representation PR by 

the character ~', on X as: oR(r) = ('(X).p(9). 
The character ~,o of B2 is also extended to the character ,~u of U by 

Then 

(2.1)  

 u(u) = 

, �9 . G L ( 2  F)  
PR = ~/'.'na82 ' (;ko) = ind~(r = indua(Xu). 

The left-hand side of equation (1.1) can be written as 

(2.2) B[Tr('r)v, p(g)w] = B[lr(r)v, ~(X).p(g)(~/,(X)w)], 

because the character '('o is unitary and so is the character r 

Let P~t be another representation of R which is extended from the representa- 

tion p oll GL(2, F) by the character r as: p'a(r) = r We will have a 

result which is similar to (2.1) above: 

~- ~ G L ( 2  F )  
P}t = 7'. ma82 (~,o) = ind~(~.X;o). 

] lms  tho right-hand side of (2.2) is 

B[rr(r)v, ~(X).p(.q)(r = B[rr(r)v, p'R(r)(*/,(X),w)] 
(2.3) . , 

= pR(r)w] .  

From (1.1), (2.2) and (2.3), we have 

(2.4) B[Tr(r)v, p~a(r)w] = B(v, w). 

Let 13 be the space of all bilinear forms B. Then 

/3 ___ HomR(Tr ~) induR(~.~o), C) 

"~ Homu(Trv 0 @".~o), C) (by the Frobenius reciprocity theorem) 

Homv (rru, */,.~o) (where rru is the restriction of rr on the subgroup U 

-~ H o m u  (~u  , ~/~. X~o) 

-~ Homu (~'u, r 

and the symbol " ~ "  means the contragredient) 
~8 t 

(where ,~'o = 82 and s' 1 - s )  
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(By exchanging s ~ s ~, we can replace X~o with Xo.) 

Let U t  = /,.ul E GSp(6,  F) I Ul = I bl bl E B2' 
bl 

whereB2'isthesubgroupofB2, consist ingofmatricesoftheformbl=(* *)  1 " 
Let ~ = ResuU~ X'o, the restriction on U1 of character Xo of U. (We will use the 

notation Res in this usual sense for the rest of this paper.) 

We have U = UI.Z,  where Z is the center of U. The subgroup Z consists 

of diagonal matrices of the form diag(z, z, z, z, z, z) in GSp(6,  F) (i.e. z e F • ). 

Then 

B _~ Homu~ (True, (r (because the two central characters match) 

___ Homp6(~rp~, indP6 (~.~)) (by the Frobenius reciprocity theorem) 

where ~rp 6 is the restriction of 7r on P6 which is a subgroup consisting of matrices 
* * * 

of the form GSp(4,  F) * in pt,2. 
1 

The group p~,2 is the standard maximal parabolic subgroup of the symplectie 

group GSp(6,  F)  whose Levi factor is isomorphic to GL(1, F) x GSp(4,  F).  These 

subgroups will be described explicitly in the next section. 

Thus the problem can be reduced to proving that: 

(2.5) When ~r is an irreducible, smooth and generic representation ofGSp(6 ,  F), 
�9 P 6  the dimension of the space Homp~ (Trp~, mdu~ (r is at most 1. 

Now, we will replace 7rp~ simply by 7r for the rest of this chapter. 

3. M o r e  n o t a t i o n s  

�9 A. We use the notation (4, G, V~) to denote a smooth (algebraic) representa- 

tion ~ of a group G in the space V~, (: G - -~ End(V~). Then Alg(G) 

represents the category whose objects are (~,G,V~) (or sometimes~ just 

simply ~, or (~, V~), if no confusion arises) and whose morphisms are usual 

intertwining operators. 

Let XT be a character of some abelian subgroup T of G. Then (~, .YT, G, l/~) 

will denote a smooth (algebraic) representation ~ of a group G in the space 

V~, ~: G - ~ End(V~) and ~(t)v = )(T(t)v for all v in V~ and t in T. Then the 

corresponding category is denoted by Alg(G, XT) whose objects are (~, ~(T, G, V~) 

and whose morphisms are usual intertwining operators. 
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When the subgroup T has only the identity of G, we can ignore ~:T and simply 
write the category as Alg(G) and the object as (~, G, V~). 

eB. Let 

GSp(4, F) = {g �9 GL(4, F)] g.J4.g r -- P(g).J4 for some scalar p(g) in F• 

where 
J 4 = ( j  J )  and J ( 1  - 1 =  ) .  

Let Sp(4, F) be its subgroup consisting of matrices of determinant 1. 
Let Go = (diag(,, , , . ,  1, 1, 1) �9 GSp(6, F)}, and G2 and Ga be the trivial em- 

beddings of the groups GL(2, F) and GSp(4, F) into the group G6 def GSp(6, F): 

/ ) G2 = GL(2, F) 
1 

1 

and S~ = 

) ( 1  
G4 = GSp(4, F) and Sa = 

1 

oC. 

/ 1 ) 
1 

SL(2,F) 
1 

1 

Sp(4,F) ~ 

We will define the subgroups P .  of the standard maximal parabolic sub- 
groups of Gn, n -- 0, 2, 4, 6. Let 

{ 1 x11 -x2 x 3 - x 4  x4X511)/ 

T6 = t I t = 1 x3 
1 x2 ' 

1 

I 11 1 Yl -Y2 Y3 
Y2 T4 = t[ t =  1 ' 

1 

T2 t i t  

1 
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All x i , y j , z  are in F. Then P6 = G4.T6; P4 ---- G2.T4; P2 = Go.T2 is the 

embedding of B2' into GSp(6,  F): 

{/** /} �9 z and P2 = P[P = 1 

1 
1 

�9 D. Let L~ be the center subgroups of Tn,  where L2 = T2, 

and 

[/x /} 
1 Y3 

L 4 =  ll l = 1 1 

1 
1 

1 1 

L 6 =  l l l =  1 1 

Let Ks  be the quotient subgroup T6/L~. Then 

K6 = k l k = L6.k, where k = 1 1 

1 

xl/} 

P o - 1 .  

i/} 
X4 

X3 

X2 

K6 is equivalent to a four-dimensional abelian subgroup of T6. We have K6 -~ F 4. 

Similarly, let K4 be the quotient subgroup T4/L4.  Then / 1 )} 
1 y~ -y2  0 

K4 = k I ~ = L4.k, where k = 1 Y2 
1 Yl 

1 
1 

K4 is equivalent to a two-dimensional abelian subgroup of T4. We have K4 - F 2. 
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4. The functors for the subgroup P~ 

�9 A. We will construct the characters for L6 and K6. Since they are isomorphic 

to F and F 4, respectively, we can recall lemma 5.4 in chapter III of [B,Z], with 

reference to the notations introduced in the above section 3.D. 

Let 
/1 Xx -x2 x3 -x4 xs~ 

1 x 4 

J t = 1 x3 
1 x2 

1 xl 
1 

Then we have the identity: g.t.g -1 = gt, for g E C]4 and 

and 

/ P l l  ) 
P22 p23 p24 P25 
p32 P33 P34 P35 

g = P42 p43 p44 p45 
P52 P53 P54 P55 

1 

where w5 = P l l . X 5  

(4.1) 

( 1 w 1 - w  2 w 3 - -w4  w 5 

1 w4 
gt = 1 W3 

1 w2 
1 wl  

1 

and 

E T6. 

g.l.g -1 = gl = I 
1 0 0 0 0 a.x5 

1 0 
1 0 

1 0 
1 0 

1 

W4 -~- P22X4 q-P23X3 q-P24X2 q -P25Xl ;  W3 --~ P32X4 Jr- P33X3 -}-P34X2 + P 3 5 X l ;  

W2 -~ P42X4 "k P43X3 "+'P44X2 "Jr- P45Xl;  Wl ---- P52X4 q-P53X3 q-P54X2 q- P55Xl .  

LEMMA 4.1: Define OL,l(1) = r and Or.,o(1) = 1, for a11 l in L6. Then any  

non-trivial  character OL o i L 6  is conjugate to eL,1 under the action o f  P6. 

Proof" Any non-trivial character eL of L6 is of the form OL(1) = lbo(a.xs) for 

some a E F x. Let g E P6 as described above with Pll = a. Then (4.1) gives us 
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Thus OL,l(gl) = ~Po(a.xs) = eL(l) .  | 

Therefore, we will be interested only in the two characters OL,o and OL,1 in 

arguments in parts B and C below. We have a similar lemma for K6. 

LEMMA 4.2: Define (~K, l (k)  = O K , l ( k  ) = I~o(Xl), and OK,o(k ) = (~K,o(k) = I, 

for all [r in K6. Then any non-trivial character of K6 is conjugate to (9K,1 under 

the action of P6. 

Proof'. Any non-trivial character OK of K6 is of the form 

OK(k) -- r -4- a2.x2 + an.x3 + a4.z4) for ai E F. 

Let g E P6 as described above with P52 -- a4, P53 = a3, P54 -- a2 and P55 = al. 

Then (4.1) gives us 

g.fr = kl where kl = 

1 wl -w2 w3 -w4 0 )  
1 w4 

1 w3 
1 w2 ' 

1 1' 

where  wl = P52X4 + P53x3 + P54X2 + P55Xl. Therefore, 

OK,l(kl) = r = IPo(p52x4 + P53Xa + P54X2 + P55X1) -= OK(k). | 

Thus, in part D below, we will consider only two characters OK,o and OK,1. 

�9 B. The normalizers of the two characters OL,~, for i = 0, 1, are defined as 

def 
Normp 6 (L6, OL,i) = 

{p E P6 I P.I.P -1 E L6, and OL,i(p.l.p -1) = OL,i(I), for a l l / E  L6}. 

LEMMA 4.3: 

(G4.T6) = Normp 6 (L6, OL,o) and ($4.T6) = Normp 6 (L6, OL,1). 

Proof." L6 is an abelian subgroup of T6. To compute the action by conjugation 

of (G4.T6) = P6 on L6, it suffices to consider only that action of G4 on To. 

From the above definition and results in (4.1), 

- For OL,o --= 1, trivially, its normalizer is the subgroup (G4.Te) = P6. 
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- For OL,l(1) = r we need: 

Pal = 1 is required. That  is, the normalizer is the subgroup ($4.T6). 

*C. The functors corresponding to the two characters eL,i, for i = 0, 1. 

We can define the Jacquet functors j_L,i as follows: 

_jL,o:  Alg(P6) - , Alg(Ga.T6,eL,o) and 

_jL,~: Alg(P6) - ,  Alg(S4.T6, eL,i). 

Let (lr, P6, V~) be an object in Alg(P6). Then, correspondingly, 

- (J_L'~ eL,o, (G4.K6), VL6,0o) is an object in Alg(G4.T6, eL,o) and 
- (J_L'l(Tr), eL, l ,  ($4.T6), VL6,01) is an object in Alg($4.T6, OL1), where 

and 

r = ~o(pnza) for all Xs. Therefore, 
| 

= for all V. ,Z @. 
We can also define the funetors J~_#: 

-,7~_'~ Alg(G4.T6,0L,o)  ~ Alg(P~).  

get (0o, eL,o, (G4.T6), Vo') be an object in Alg(G4.T6, eL,o). Then 

(JL+'~ V') is an object in Alg(P6), where we also have 

J~'~ = eL,o(l).Oo(g.t)v' = Oo(9.t)v', for all (9.t) e (G4.T6) 
and 1 E L6, and v' c Vo'. That  is, oq+ L'~ is just an embedding 

Alg(G4.T6, eL,o) ~ Alg(P6). 

_j+L,I: Alg(S4.T6, eL, i)  , Alg(P6). 

Let (01,OLI,(S4.T6),V~) be an object in Alg(S4.T6,OL,I). Then 

(-7~-'1(01), P6, V') is an object in Alg(P6), where J+LI(01) = ind~s64.w6)(01) 
is an unnormalized compact induction; and (01, eLA, (84.T6), V~) satisfies: 

Ox((s.t).l)v' = eL,l(l).Ol(s.t)v', for all v' E V~, (s.t) E (S4.T6) and I e L6. 

*D. We have the same results for the normalizers of two characters eK,i.  

Norm(G4.w6)(K6, OK,i) a+~ 

{ p 6 (G4.T6) I p.~.p-1 6 K6, and OK,i(p.[c.p -1) = OK,i(k), for all k 6 K6} 

= (Mi.T6),  where 

{g e G41 g.[c.g-1 6 g6 ,  and OK,~(g.[~.g -x) ----- eK,i(k),  for all k e K6}.  M~ 

vLo,e, --- V~/V(L6, eL,d 



Vol. 101, 1997 THE SPIN L-FUNCTION 17 

LEMMA 4.4: 

(G4.T6) = Norm(G4.T6)(K6, OK,o) and (P4.T6) = Norm(G,.T~)(K6, OK,l). 

We now define the functors corresponding to the two characters OK,/, for 

i = 0, 1, acting on Alg(G4.T6, 0,.,o). 

We ignore the functors acting on Alg(S4.T6, OL,1) for certain reasons which 

will be seen later. (Also refer to the chart in Section 0. Introduction.) 

We can define the Jacquet functors j_K,i as follows: 

_jK,o: Alg(G4.T6, OL,o) , Alg(G4) and 

_j_K,I: Alg(G4.T6, On,o) , Alg(P4). 

Let (8, OL,o, (G4.T6),Ve) be an object in Alg(Gt.T6, OL,o). Then, 

correspondingly, 

_ (j_K,o(0), G4, VK6,0o) is an object in Alg(G4) and 

- ( J K ' I ( 0 ) , P a ,  VK~,O1) is an object in Alg(P4), where VK6,0, = 

Ve/V(K6, OK,i) and 

V(K6,0K#) = <0(k)v - OK,dk)v, for all v E Vo and k E K6}. 

Let us denote Alg(G4.K6) to be a sub-category of Alg(G4.T6, OL,o), consisting 

of representations which act trivially (by OL,o) on L6. That, is, we identify 

(O, OL,o, (G4.T6), Vo) with (8, (G4.K6), Vo). 
We can also define the functors JY' i :  

_ jy ,o :  Alg(Ga) , Alg(G4.K6). 

Let (do, G4, V') be an object in Alg(G4). Then (,.TK'~ (G4.K6), V') is an 

object in Alg(G4.K6). 

Alg(P4) Alg(a .K6). 

Let (al, P4, VI') be an object in Alg(Pa). Then (:7~'1(al), (G4.K6), V') is an 

object in Alg(G4.K6), where K,i �9 .(G4.K~), ,, J+  (ai) = m(l(M,K6)(ai) is an unnormalized com- 

pact induction and (a~, (Mi.K6), Vi') E Alg(Mi.K6) is defined by a~(m.k)v' = 
OK,i(k).(ri(m)v', for all v' E Vi', m E Mi, k E K6, where we denote Mo = G4 

and M1 = P4. (Obviously, the induction inside the functor jK,o is identity.) 
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5. T h e  p r o p o s i t i o n  

Following [B,Z], we state some properties of the functors `TL,i, L,i _ f4~, i = 0 , 1 .  

PROPOSITION I: For any representation ~r E Alg(P6),  01 E Alg(S4.T6, eL,1),  

and 0o E Alg(G4.T6,  OL,o) and i = 0, 1, we have: 
q-L,i q-L,i (1) All  the functors . . . .  + are exact. 

,TL,i,-fL,i{o.~ _ L j L,i (2) ~,_ ~,+ , ~, "~ Oi and f 2 '  ,7; (Oi) ~- 0 i f  i r  
L1 q L , t  is left-adjoint to J 2 '  ; that  is, there is an isomorphism (3) . , +  

(5.1) Hemp6 (y+L' I (01)  , 71") __'2 Hom(s4.T6)(01, y L'I (Tr)) 

which depends functorially on 7c and 01. 
L,o j L , o  is right-adjoint to J~_ ; that  is, there is an isomorphism 

(5.2) Homp~ 0r, ,TL+'~ L,o _~ HOm(G,.T6)(`7_ ~ (rr),0o) 

which depends functorially on ~r and 0o. 

(4) Let  us consider the homomorphisms:  

L,o L,o 
Co: ~ ~ s~'~176 e'o: s :  s ;  (Oo) , Oo, 

el: `TL'13"L'l(Tr) ~ 7t"; e~: 01 ) `7._L'Ij'..bL'I(0, ). 

Then go and t~ are isomorphisms, and s and f l  form a short exact sequence: 

(5.3) o--~`7~,1`7~_'1( . )  ~' ~o `7~,o , .  , `7~,o(~) - -~  o. 

d ,~L i~ 0 (5) `7_L,i and `7~,i establish a bijection between Oi an d+'  t i). In particular, 
L i  0 Oi and `7~_' ( i )  are irreducible simultaneously. 

The proof  of Proposi t ion I will be given in Section 9. 
K,i We have the same proposit ion for the functors `7_K,i and `7_~ . 

6. S e t t i n g  u p  t h e  d o u b l e  c o s e t  c a l c u l a t i o n  

We reduced our work to investigating only the space Homp 6 0r, ind~j~ (C-X)) (by 
,-fL ,i ,-fL,i 2.5.) From Proposi t ion I, part  1 proves that  all the functors ~,_ , ~,+ , where 

i = 0, 1, are exact. Therefore, it together with the short exact sequence in par t  

4 will give us this short exact sequence: 

L o L,o 0 ~ Hemp6 (`7_~' `7_ (zr), indP~ (r ~ Hemp6 (7 r, indP~ (r 
L,1 L,1 �9 P6 , H e m p ,  (`7q~ .72 (Tr), mdu1 (C-X))- 
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L,1  L , 1  * P6 Eventually, we will prove that the space Homp6(J_ ~ ,7_" (r), mdu1 (r is 

trivial and Homp 6 (J+L'~176 i n d ~  (r is at most one-dimensional. 

For i = 0, 1, let t~ = ,]L'~(Tr). Then we will consider only the following spaces: 

L , i  " P 6  Homp 6 (J~'~fl_L"(Tr), ind , :  (~b.X)) --- Homp6 (fl.~ (0i), mdu1 (~b.~()). 

In fact, we will investigate the space Homp~(J+~' i ( f~) , ind~(r  the 

following lemma for any representations 0~, where 01 E Alg(S4.T6, OL,1) and 

0o E Alg(G4.T6, OL,o) and ,7+L'i(Oi) was defined in Section 4.C. 

We need the following lemma, which will play a basic role in double coset 

calculation in the next sections. 

LEMMA 6.1: Let X be a locally compact, totally disconnected group, and H1,//2 

be its closed subgroups. Let (o'I,H1, Vol) be a representation of H1 and X2 

be a character of H2. Let the group H = H1 • H2 act on the group X by: 

x ~ h2xh-~ 1. Assume this action is constructible.t For x C X ,  let y~ = H2xH1 

be a double coset representative in Y =  H2\X/H1.  Let x~(h) = X2(xhx-1),  for 

all h E ~H = H1 N x - l H 2 x .  I f  the space Hom(~H)(al, X~) = 0 for all orbits yx 

but only one orbit y~o = H2xoH1, then 

Xo (6.1) Homx(a~ ,  X X) ~-~ Hom(~oH)(a,, )/2 ), 

where the inductions are compact and not normalized. 

t Remark: In fact, by the Appendix in [B,Z], p. 62, one can prove this assump- 

tion holds in applications in this chapter. 

Proof." We recall that Y = H2\X/H1.  Then Y is generally not Hausdorff. We 

define the projection by double coset, P: X --~ Y, by x ~-~ y~ = H2xH1. It is a 

continuous mapping. 

Let us recall the action of group H = (H1 •  on group X by x ~-~ h2xh-~ 1. 

Then the orbit of x E X is just the double coset H2xH1. Its stablizer is calculated 

simply, stab(x) = H1 N x - l H 2 x ,  and now denoted as ~H which is embedded 

into the group H = (H1 • /-/2) by h ~ (h, xhx  -1) for any h E ~H. Then 

(H1 • H2)/ZH "~ H2xH1. 

We now consider two representations on ~H which are the restrictions of the 

representation al  and of the conjugated character X~, which is defined by 

~ ( h )  = X2(xhx-1), for all h e XH. 
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Let us define a representation (a, H, Va) on the group H = (H1 x H2). Let 

V~ = Home(Vat, Vx2 ). For T �9 Va, v �9 Vow, let 

a(hl, h2)T(v) = x2(h2) -1 T(o'l(hl)V). 

On the subgroup ~H, 

a(hl, xhlx-1)T(v) = X2(XhlX-1)-l.T(r = x~(hl)-l.T(Ol(hl)V), 

for all hi �9 *H. Thus 

a(hl,xhlX-1)T(v) -- T(v) is equivalent to T(al(hl)V) = x~(hl)T(v). 

Thus we have a natural isomorphism: 

(6.2) Hom(.H) (lv~t, a) --~ Hom(z H)(al, X~). 

�9 We now consider another representation of H, (a*, H, C~(X,  Vo~ ), defined 

by 
a*(h)f(x) = a*(hl, h~)f(x) = k'2(h21).al(hl)f(x), 

for any x �9 X, h = (hi,h2) �9 H and for any .f E C~(X,V~,I), f is a com- 

pactly supported smooth function: X ~ V,1. Then the representation a* 

inherits the same property (6.2); that is, there exists a natural isomorphism 

(6.a) Hom(~H) (lust, a*) _~ Hom(z H)(al, 1/3). 

We also define the action of representation a* on Homc (C~ (X, V, 1 ), Vx2) ~- 
Homc(C~(X,  V,,t),C ) as a*: g , End(Homc(C~(Z, Vol), V• 

For any A � 9  (C~ (X, V~ ), V• f �9 C~ (X, Va~ ) and h �9 H, 

(6.4) (a*(h)A)( f)=A(a*(h)( f )) .  

The right translations p and A act on the induced spaces a x  and xx ,  respectively, 

in the usual way. Let us define the translation action of the group H = (H1 x/ /2)  

on the space a X by 

(6.5) a(h)f  = a(hl, h2)f = .~(h2)p(hl)f, for all f E ax .  
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Let ~ act on the space Homc(C~(X ,  Vol), V• ) by 

(6.6) (a (h)A)( f )  : A(a(h) f ) ,  for any A, f and h E H. 

L e t / ) ( X )  be the subspace of all distributions A in space Homc (C~  (X, Vo~ ), Vx2) 

which satisfy 

(6.7) a(h)A = a*(h)A, for all A E :D(X), h -- (hi, h2) E H. 

�9 Let us define the sheaf ~" on the group X. For any open set U E X, we 

have ~ (U)  = C ~ (U, V~ 1 ). Let ~c be the corresponding sheaf comprising a 

module of compactly supported sections: for any open set U E X, we have 

.re(u) = c (u, vol). 
Now let Z = P- l ( y x )  = H~xH1. Then Z is a (closed) double eoset in X,  

which is stable under the action of H = (H1 x / / 2 ) .  Let 9rz be the restriction 

of the sheaf ~- on Z, which is defined as: :Fz(U, Vo,) = .~(U, Vo~) for any open 

subset U in Z. Then )rz is also a sheaf and the fiber :FZ,z ~ .F'z, for any z E Z. 

The etale space of ~-z is just the restriction of the etale space of ~" to Z. 

Now, we also define (9vz)c as the restriction of 5r~ on the subgroup Z. 

Let Jrc(a*) be a submodule of ~r  generated by elements of the form 

~(h)f  - a*(h)f ,  for f E ~-~ and h E H = (H1 x/-/2). Then M = .Tc/.F'c(a*) is a 

C ~  (Y, Va,)-module. 

Similarly, we define (.~Z)c(a*) to be a submodule of (~'z)c generated by 

elements of the form n(h) f  - a*(h)f ,  for f E (grz)~. 

The proposition I-9 in [E,H] shows that it is only necessary to specify a sheaf 

on a base of the topology of the space. Let 

13o = (P(H2KH1),  where K C X is both compact and open} 

be a base of the topology of space Y. Then ~, the corresponding sheaf on Y, 

associated with M and base Bo, is defined as follows: 

For any subset U E /3o, let ~(U) = 1u.M. For U, V E 13o and V C_ U, the 

restriction map Pg, v: 6(U) ~ 6(V) is defined by pv, y(m) = l v . m ,  for any 

m E M. Then 6 is proven to be a presheaf which satisfies the sheaf axiom. 

Hence it is a sheaf. 

Now the condition in theorem 2.36 of Bernstein and Zelevinsky, in [B,Z], that  Y 

is a Hausdorff space, can be waived and its constructibility property is sufficient 
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instead, for our purpose (by the same arguments used to prove theorem 6.9, loc. 

cit.). Then the theorem shows that: 

(6.8) For any Yx ~ Y, the stalk Gy~ is isomorphic to (ffz)c/(ffZ)c(a*), where we 

recall Z = P- l ( yx )  = H2xH1. 

�9 For any A E Homc(ay,,Vx2) -~ Homc((.~z)c/(~z)r it is a 

distribution on the subgroup Z, which satisfies A(t~(h)f - a*(h)f)  = O, 

for any f E (~-z)r and h E H. Therefore, by (6.4) and (6.6), 

( ~ ( h m ) ( / )  - ( ~ * ( h ) ~ ) ( I )  = 0 or ~ ( h ) ~  = ~*(h) / , .  

Now we need the following lemma. 

LEMMA 6.2: Let (a, H, V.(~) be an 2" representation of the group H and Ho be its 

closed subgroup. Let A be a distribution of H/Ho, satisfying 

(6.9) ~ ( h ) A  = ~ ( h ) A ,  for all h in H. 

I r A  # O, then A G Hom(~H)(1v,~ ,o). 

Proof: A is a distribution on H/Ho, hence it is invariant under action of Ho. 

By (6.9), for any f E C ~  (H, Vo~ ) and h E Ho, we can write 

a(h )A( f )  = ~(h)A( f )  -- t~(1)A(f) = A(f) .  

By the condition A # 0, we can choose some f ,  such that A(f )  # 0. That gives 

us A 6 Hom(~H)(1v~,a). | 

Let H = (H1 • H'z), Ho = ~H and c~ is o* in the above lemma. (Thus 

y, ~- H/Ho.) Then for any A # 0 in the space Homc(~y~, Vx2), we proved that 

A is also in the space Hom( ,g) ( lv~ ,  0*). Recalling the result (6.3), we have 

Hom(~H)(1v.1,0*) ~ Hom(~H)(Oh, X~)- 

Thus we have the following embedding: 

(6.10) Homc(Gy,, Vx~) ~ Hom(~g)(al, X~). 

�9 On the other side, for any A E Homc(G(Y), Vx2) = Homc($'c/9~r Vx2), 

it is a linear functional on the space of compactly supported global sections of G, 
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or, in other words, a distribution on X, which satisfies A(n(h)f  - (r*(h)f) = O, 
for any f E ~'~ and h E H. That is, n(h)A = a*(h)A. Thus 

D(X) ~ Homc(G(Y), Vx~ ). 

Now we try to embed Homx(a  x,  X X) into D(X). From Frobenius' reciprocity 

theorem, 

Homx Hom.  

Given any homomorphism r E HomH~ (a X, X2), we will construct a distribution 

A on X as follows: 

Let II be a projection, II: Cc ~ (X, V~ ) ) a x.  For all f E C ~  (X, V~), we 

can define (Hf)(x) = fH~ a ' (h ) - l f ( hx )  dh. Then, for any ha E H1, 

(Hf)(hlX) = / a l ( h ) - l f ( h h l x ) d h  = j o ' l (hl)(Tl(hhl)- l f (hh,x)d(hhl) ,  
H1 H1 

d(h') = (rl(hl)(IIf)(x). (6.11) 
. J  

H1 

Thus (1-If) E a x.  Hence we can define A(f )  = r E Vx~. Then we 

can check that  A satisfies the condition (6.7) to be in / ) (X) .  Thus we have an 

embedding: 

(6.12) Homx (a x ,  X X) ~-* D(X) _ Homc(a(Y), Vx2). 

�9 Now we suppose that all spaces Homc(~ux,Vx2) ~- Hom(-H)(al,X~) = 0 

for all orbits Yx but only one orbit y~:o. We consider two cases: 

- When the orbit y~o is open, we have a short exact sequence of distributions: 

0 ~ Homc(r215 ) , Homc(~(Y), Vx2 ) 

Homc(a, o,V  ) ,0. 

In theorem 6.9 of Bernstein and Zelevinsky, in [B,Z], the condition that  

Y is a Hausdorff space was waived and replaced by its constructibility 

property, which is sufficient for our argument. Then it shows that the 

space Homc(~(Y \ Yxo), V• "~ 0 since all spaces Homc(Gy~, Vx2 ) - 0 for 

all orbits yx in Y other than the only open orbit y~o. Therefore, 

(6.13) Homc(~(Y), Vx2 ) "2_ Homc(~v.o, Vx2). 
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- When the orbit y~o is not open, we will consider its closure Yc. We have 

the following short exact sequence: 

0 ~ Homc(G(yc),Vx2 ) - ,  Homc(~(Y),Vx2 ) 

, H o m c ( G ( Y \ y ~ ) , V •  ) , O. 

By the same argument as above, Homc(G(Y \ y~), Vx2 ) N O, because the 

spaces Homc ( ~ . ,  Vx~) ~ 0 for all orbits y~ in Y \ yc. Therefore, 

(6.14) Homc(G(y~), Vx2 ) ~ Homc(G(Y), Vx2 ). 

The only surviving orbit Yxo is open in its closure Yc. Then we can apply 

the above case for an open orbit: 

(6.15) Hornc(Gy~o, Vx2 ) ~- Homc(G(yc), Vx: ) - Homc(G(Y), Vx2 ). 

Therefore, from the results in (6.10, 6.12) and (6.13, 6.15), we have 

n o m x  (~rl x,  X x)  ~ Hom(~o H)(al, X~~ 

This completes the proof of Lemma 6.1. | 

We apply this lemma to the double coset calculation mentioned above. 

LEMMA 6.3: For i = O, 1, let us define PDi = (Ni.T6) n (p- l .Ul .p) ,  where p E 

U I \ P 6 / ( N i . T 6 ) ,  No = G4 and N1 = S4. Define ( r  = (r  

for all d in PDi. Assume  that the space Hom(pD,)(Oi, (r p) = 0 for all orbits 

U1 .p. (Ni.T6) but only one Ul.po. (Ni.T6). Then for all representations Oi, where 

0t C Alg(S4.T6, @L j ) ,  and 0o E Alg(G4.T6, OL,o), 

(6.16) I,,i �9 P6 Home 6 (,7.~ (0i), mdut  (r r Hom(,o D,) (Oi, (r v~ 

Proof" Same as that of Lemma 6.1, in which X = P6, H1 = (Ni .T6) , / /2  = U1, 

al  = 0i and X2 = (r (These groups satisfy conditions in Lemma 6.1.) 1 

In the next section, we will calculate each Hom(pDd space corresponding to 

each double coset p in UI \P6 / (N i .T6 ) .  

We intend to show that the assumption in the above lemma could be satisfied: 

for each i, all spaces Hom(pD,)(0i, (r will be trivial, possibly except only one 

space Hom(poDd(0~, (~b.X) vo) corresponding to the orbit 1)o. (Refer to the chart 

in Section 0. Introduction.) 
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7. T h e  doub le  coset  ca lcu la t ions  for t h e  s u b g r o u p  P6 

�9 A. STAGE 1. <> a. i = 1. The double cosets for this case are in 

UI\P6/(S4.T6) .  

We have UI.(S4.T6) = P6, hence there is only one double coset whose repre- 

sentative is p=l .  (Its orbit is open.) Let 01 = fl_L'l(Tr). Then, from Lemma 6.3, 

we have 

L 1 L 1 ~ Homp6(j+L, l (01) , lndux(r  Homl%(ff+' ,7_' (Tr)," P6 �9 P8 lndu 1 (r 

r nomD1 (01, (r p) = nomD1 (01, (C-X)). 

Then f ( O l ( d ) v )  "= ( r  for all f E n o m D l ( 0 1 , ( r  d E D1 and 

v E Vol. Let (10 0 0 0 x) 0 
d =  1 0 

1 0 
1 0 

1 

in L6. Then d E U1 A (84.T6) = PD1 ~ D1. 

- Ol(d) = OLd(d) = r and .  

 (00 0 ) ( 1 )  
0 .X 1 = r 1 7 6  

Then we can choose x~ in d, such that  (r = 1 # 01(d). 

Therefore, the identity f (Ol(d)v)  = OL , l (d ) f ( v )  = (r  forces f ( v )  = 

0 for all v E Vol. That is, f = O. Thus 

L,1 L,1 �9 P 6  (7.1) Homp 6 (fl_~ ,7_" (Tr), mdu1 (C-X)) r HomD1 (01, (r '~  0. 

0 b. i = 0. The double cosets for this case are in UI \P6/ (G4.T6) .  We have 

(G4.T6) -- P6, hence there is only one double coset whose representative is p=l .  

(Its orbit is open.) Let 0o = ff_L'~ Then, from Lemma 6.3, 

L,o L,o �9 P6 L,o �9 P6 Homp6(,J_ ~ , .7" (Tr),mdul(r "-' Homp6(ff_ ~ (Oo) ,mdu l ( r  

(7.2) =-* Homno (0o, (r p) = HOmDo (0o, (r 

For all f E Homoa(0o, (r f(Oo(d)v) : ( r  for all d E Do and 

v C Voo. We have Do = U1 N (G4.T6) = U1. Then the most general form of d 
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in U1 is 

d= 

b Xl * * * ! /  
1 �9 , �9 

b Xl * 
1 �9 

In general, we cannot compare (r and Oo(d), or, in other words, we cannot 

claim anything about f(v). Thus the space Homu~ (0o, (r in (7.2) may not 

be trivial. We will prove this next. 

o c. We recall now the short exact sequence at the beginning of Section 6: 

' Homp6 (J~'~176 indP~ (r , Homp 6 (~r, indPu~ (*.X)) 
L,1  L,1  �9 P 6  Homp6(J_~ J_~ (Tr),mdul(r 

By this sequence, (7.1) and (7.2), 

i P6 _ Homp6 (2.L,o2_L,o (7r), indP] (r Homp6 (Tr, ndu1 (r 

(7.3) ~ Homux (0o, (r (where 0o = ,7_L'~ 

-- nom(c4 .W6)(0o, ind(Gs4'T6) (r 

(by the Frobenius reciprocity theorem) 
(7.4) L , o  �9 ( G 4 . T 6 )  -~ Hom(c4.T6)(OL,o.J-" (r) , lndu1 (r 

The next step is to repeat the work on functors and double coset calculations 

for the subgroup (G4.T6). 

�9 B. STAGE 2. By (7.4), we reduced our work to investigating only the space 

L,o  �9 (G4.T6) Hom(G4.z6) (OL,o.J-" (r),  mdu  1 (r 

From Proposition I, part 1 proves that  all the functors j_~,i and ~r~'/ (where ~ , +  

i = 0, 1) are exact. Therefore, it together with the short exact sequence in part  

4 will give us this short exact sequence: 

0 , H0m(G~.T6) (0L,o.2K'~176 ind~4'T~) (r162 

H0m(G,.T~)(0L,o.8o, ind~ ~'Te)(r 
K,1 K,I �9 (G4.T6) ' H0m(G4.T6)(0L,o.J.~ 5_" (Oo),mdu~ (r 
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K o K o . (G4.T6) Eventually, we will prove that H0m(G4.T6)(OL,o.ff_~ ' ,7_ ~ ' (0o), lndu1 (~.X)) 
K,1 K,1 :_.j(G4.T6) is trivial and the space Hom(G4.T6)(OL,o.ff~ ,7_ ~ (/90),mUU1 (r is at 

most one-dimensional. For i = 0, 1, let ai = ffK'i(Oo) = fl_K'i(J_L'~ Then 

we will consider only the following spaces: 

m(G4.T6)( L,o.J+ J -  (eo),ind(~4"T6)(r 

-- Hom(G,.T6)(0L,o.J+ K'' (a~), ind(uG *'T6) (r 

In fact, in the following lemma, we would investigate the space 

K,i �9 ( G 4 . T 6 )  
Hom(G4.T~) (OL,o-J-~ (a~), mdu 1 (r 

for any representations al E Alg(Mi) and fl+g#(ai), which was defined in Section 

4.D. We have a lemma which is similar to Lemma 6.3 (same proof). 

LEMMA 7.1: For i = O, 1, let us define PDi = (Mi.T6) fq (p- l .Ul .p) ,  where p 6 

UI \ (G4 .T6) / (Mi .T6) ,  Mo = G4 and M1 = P4- Let (r = (r 

for all d in PDi. Assume that the space Hom(pD,)(eL,o.a~, (~b.x)P) = 0 for ali 

orbits UI.p.(Mi.T6) but only one UI.Po.(Mi.T6). Then for all representations 

a~ in Alg(M~), 

(7.5) 
K,i / Hom(G4.T~) (OL,o.J-~ ((:ri), ind(uG14"T6) (~b.X)) ~ Horn(poD, ) (OL,o.O.i, (~).x)Po). 

Using this lemma in the next step, we will calculate each Hom(~D,) space 

corresponding to each double coset p in UI\ (G4.T6) / (M~.T6) .  

We intend to show that the assumption in the above lemma could be satis- 

fied: for each case i, all spaces Hom(~D,)(OL,o.a~, (r p) will be trivial, possibly 

except only one space Hom(poi),)(OL,o.a~, (r p~ which corresponds to the 

orbit po. 

o a. i = 0. The double cosets for this case are in UI \ (Ga .T6) / (Ga .T6) ;  hence 

there is only one double coset whose representative is p=l.  (Its orbit is open.) 

Let ao = ffK_'~ Then, from Lemma 7.1, we have 

Hom(G4.r6)(OL,o.,7~'~ f f  _K'~162 ) 

'---, HOmDo (0L,o.0"to, (~ .X)  p) = HOmDo (0L,o.a' o, (r 
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For all f E HOmDo(eL,o.a '  o, (r we have f(OL,o.a~o(d)v) : ( r  for all 

d E Do and v C VOL.o.~,. Let 

ilo x x3 x4 
d = 1 0 x3 

1 
1 

Then d E U1 N (G4.T6) -- Do. In fact d E K6. Let I6 be the 6 • 6 identity 

matrix. Then 

- OL,o.a~o(d) = OK,o(d).ao(I6) = 1, and 

- = r x 2  1 

Then we can choose x2 in d, such that OL,o.alo(d) = 1 # r = (r 

Therefore, the identity ] (OL ,oJo(d )v )  = f ( v )  = r  = (~P.x)(d)f(v)  

forces f ( v )  = 0 for all v E VOL,o.,,. That  is, f = 0. Thus 

(7.6) 
K , o  K , o  �9 ( G 4 . T 6 )  nomDo (OL,o.alo, (r _ 0. HOm(G4.T~)(OL,o-J-~ J-* ((?o),lndu 1 (C-X)) ~ "~ 

o b. i = 1. The double cosets p for this case are in UI \ (G4 .T6) / (P4 .T6) ,  

which is simply equivalent to U1 \P6 / (P4 .T6) .  We now consider the latter double 

cosets. 

Let us define a subgroup B1 of the Borel subgroup of GSp(6,  F): B1 consists 

of matrices of the form 

* * * * * 

* * * 

Decomposing P6, we have 

P6 = U U1 ('Y'7) (P4.Ts).  
"yEB1 \P6 / (P4 .T~ );~' ~ U1 \B1/[B 1 n(~(P6 .T4)'~ - ~ )1 

We can observe B I \ P 6 / ( P 4 . T 6 )  -~ B~\GSp(4 ,  F) /P~,  where the Borel subgroup 

B~ consists of matrices of the form 
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and the parabolic subgroup P~ consists of matrices of the form 

of the group GSp(4, F). 

By the well-known Bruhat decomposition, we now can identify the Weyl group 

~4; of GSp(4, F) with B~\GSp(4,  F)/B~. It is generated by two permutations of 

a l ,  a2, and by four transformations of the form a l  ~ c~ 1 and (~2 ~ c~ 1, where 

c~1, c~2 are non-zero complex numbers. Therefore, the order of the Weyl group "vV 

is eight. 

Recalling the generalized Bruhat decomposition (cf. chapter 1.2 in [Ho]), we 

have B~\GSp(4,  F) /P~  - -  )/~]B\~)/'~p, where ~VB = )4; n B~ has only the 

identity and We = W N P~ is a subgroup consisting of the identity and 

-1  1 

1 
1 

Thus there are four double cosets in B~\GSp(4,  F) /P~.  

double cosets in BI \P6 / (P4 .Ta)  whose representatives are 

% -- 

1 / /1 
1 1 

1 
1 , 71 -- 1 

1 
1 

1 -1  

Hence we have four 

-1 1 1 /' /x / / 
1 - 1  

1 a n d  73 --- 72 = -1  1 

-1  -1  
1 1 

For j = 0, 1, 2, 3, we will consider all 7~'s associated with each 7j and recall that  

p will have the form p = (7'.7j). Let al  = J_K'l(oo). 

g,l K 1 �9 .(G4.T~){~h ~-~ Hom(G4.T6) (0L,o.J+ J_~ ' (0o),mou, ~,~.;r j 

(7.7) K,I �9 (G4.T6) "~ H0m(G~.T6)(0L,o-J-~ (al),mdv~ (r 
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Then  by L e m m a  7.1, we will consider the spaces Hom(pD1)((gL,o.a~, (r  

for all p ' s  of the form p = (7 ' .7j) ,  where j = 0 ,1 ,2 ,3 .  For all f C 

Hom(pD1)(et . ,o.a~,  (r v E VoL,o.,,~ and d E PD1, we have 

(7.8) f({gi~,o.a~ (d)v) = (r  

We now consider four different cases below: 

�9 a. j = 0. 7 = % = 1. Then  7 '  E U I \ B 1 / [ B 1  N ( % ( P 4 . T 6 ) 7 o l ) ]  = 

U I \ B 1 / [ B 1  M (P4.T6)] .  Since B1 C (P4.T6) ,  hence B1 M (P4.T6)  = B1. T h a t  

is, 7 '  = 1 only; and p = (7 ' .%)  = 7o = 1. Let (10 xxl ) 1  x 
d =  1 0 x 3 

1 
1 

Then  d E U 1  f"l (P4.T6)  = ~~ in fact, d is in K6. 

- (9L,o.a'l(d) = OK,l(d).O'l(I6) ---- ~)o(0) = 1, and 

- (r  = ( r  = r 0 x2 .X = r 

Then  we can choose x2 in d, such tha t  OL,o.a'l(d ) = 1 # r = ( r  

For all f C Hom(,oD,)(OL,o.a~, (r the identi ty 

f (OL,o.a~(d)v)  = f ( v )  = r  = ( r  

forces f ( v )  = 0 for all v E VeL.o.o~. T h a t  is, f = 0. Thus  the space 

(7.9) Hom('~oD1)(OL,o.a~, (r  ) ~- O. 

* b .  j = l :  7 = 7 1  = 

/ x ) 
1 

1 
1 

- 1  
1 

To consider 7 '  E U l k B 1 / [ B 1  gl (71(P4.T6)711)] ,  we observe tha t  

Yx B1 n, a,P4.T6,  s, = { l* *****) } 
1 * E G S p ( 6 , F )  . 

* * * 

* * 

1 
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Since (U1.Y1) = B1, we have only one 7' = 1 and hence p = (7'.71) = 71. Let 

d = 

(10 x2x3 x i ) 1 1  0 x3X4 
1 

1 

Then 

d ' =  1 
1 

will satisfy the identity d.71 = 71.d', and d' E (711.U1.71) M (P4.T6) = "nD1; in 

fact, both d and d' are in K6. We have: 

! t 
- OL,o .a l (d  ) = OK,l(d').al(I6) = r and 

-- ( r  t )  = ( r  = (~/).~)(d) --- r ( 

= ~o(X2). 

x2X3)'X( 1 ~ )  

Then we can choose x2 and x3 in d such that OL,o .a ' l (d  ) = r # r = 

(r ~: (d'). For all f G Hom(~:D,)(OL,o.a~, (r the identity 

! t f (OL,o .O' l (d  )v) = r  = r  = ( r  "(' ( d l ) f ( v )  

forces f ( v )  = 0 for all v C VOL,o.O: �9 That is, f = 0. Thus the space 

(7.1o) Hom(,~ D, ) (OL,o'O'~, ( r  "n ) ~' 0. 

( 
*c.  j = 2 .  7 = 7 2 =  [ 

\ 
We have a similar result: 

-I 

1 

-I 

(7.11) Hom(~,Dt)((~L,o.ff~, (~.X) "~2) --~ 0. 
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- 1  

- 1  
e d .  j = 3 .  ")' ~- "~3 : 1 " 

- 1  
1 

Let  us consider "y! E U I \ B 1 / [ B i  n (q,3(P4.T6)731)], which is a set of diagonal  

mat r ices  of the form: diag(z, z, 1, z, 1, 1), for all z E F • . Therefore,  

(z ) - -Z  

(7.12) P = ('Y'.'Y3) = - 1  for all z E F • 
Z ' 

- 1  
1 

Suppose d' E (P4.T6).  To satisfy the condition d = p.d ' .p  -1  E U1, the mos t  

general  form of d' is 

(7,13) 

! 
a 5g 1 

a 

d' = 

yr Z.X3 X4 
a ;173 
b 1 y x2 

1 x~ 
1 

(Then  d' E PD1.) 

a yl z.x3 

a , and 
b i y 

1 

1 

- ( r  = ( r  = ( r  = r z . x  I 1 

= r + Z.Xa).~ ( a --;3)=r ~. 

Recalling tha t ,  for all f E Hom(,D~)(OL,o.a~, (r d' E PD1 and v E VOL.o.O;, 

we have the ident i ty 

(7.8) f ( 6 )L ,ox r i (d ' ) v  ) = ( r  



Vol. 101, 1997 THE SPIN L-FUNCTION 33 

For each z # 1 fixed, we have two cases: 

- If Co(Z) # r let a = 1,x3 : 0,y = y' = 0,b = 0 and Xx = 1 in d'. Then 

OL,o.O'~(d') ---- r r Co(z) ---- (r 

Therefore, (7.8) gives r = ~bo(Z).f(v). This identity forces f(v) = 

0 for all v e VOL,o.a i �9 That is, f = 0. 

- I f r 1 6 2 1 6 3  L e t I a b e  

a diagonal matrix of the form (a, a, a, 1, 1, 1). Then 

OL,o.a'l(d') = al(Ia)  and (r ') = ]a[', for almost all s. 

Then, (7.8) is rewritten as 

f(al(I~)v) = laid.f (v). 

This equation has solutions for at most a finite number of s in the complex 

plane. That is, f -- 0, for almost all s. Thus, for all matrices p described 

in (7.12) above (where z # 1) and for almost all s, 

(7.14) Hom(pD1)(OL,o.a~, (r ~-- 0. 

Finally, we consider only one case when z = 1 (hence p -- 73). Generally, we 

cannot compare OL,o.a~(d) and (r for d E ~3D1. In other words, the 

space Hom(~zD1)(OL,o.a~l, (r "r3) may not be trivial, for any representation al  

in hlg(Pa).  

Now, we will collect results in (7.7) and (7.9), (7.10), (7.11) and (7.14). By 

Lemma 7.1 we can conclude, for almost all s, 

(7.15) 
K,1 K,1 �9 (G4.T6) ! 

Hom(G4.T,)(OL,o.ff~ if_" (O~ (r ~-' Hom(,zD,)(OL,o.al,(r 

�9 C. We recall now the short exact sequence preceding Lemma 7.1: 

K,o K,o �9 (G4.T6) 
0 )HOm(G4.Te)(~}L,o'J-~ ,]~" ( ~ o ) , l n d u  1 ( r  

�9 (G4.T6) 
) H0m(G4.Te)(OL,o.00, I n d u  I (~).X)) 

K,I K,I �9 (G4.T6) HOm(G4.Ts)(OL,o.J-~ J-~ (Oo),Indu I (r 

From this sequence, (7.6) and (7.15), we have 

�9 (G4.T6) 
Horn(G4 .Tr (OL,o'0o, mdu~  (r 

< K,1 K,1 di-m HOm(G4.Te)(OL,o'ff-~ ,J'-~ (0o),ind(uG14"T6)(r �9 
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For any two spaces A and B, by the notation: Ad~ m B, we mean the dimension of 

A is not greater than that of B: dim(A) < dim(B). Then, from (7.4) and (7.15), 

�9 P6 Homp~ (Tr, mdu1 (r 

(7.4) ~ Hom(G4.T6) (OL,o.J_L'~ (7r), ind(vG4"Ts) (r 
< K ,o  K,o  �9 (G4.T6)  

di-m H0m(G4-T6)(0L,o'J~ - ,]2 (0o),mdul (r 

(by the above sequence and (7.6)) 

(7.16) ~-~ Hom(,aD1)(OL,o.a~, (r ~3) (by (7.15)) for almost all s. 

In the next stage, we will prove that Hom(,aD1)(OL,o.a~, (r may not be 

trivial�9 

Let HI = 73D1 = (P4.T6)VI (731.U1.73). Let T : (r That is, T(hx) = 

(r for all hi e H1. Recall J_L'~ = Oo, J_K'l(oo) = al.  Then 

Homp~ (Tr," P6 mdu  (r 
(7.17) < di-m Hom(,3 D1 ) ( O L , o ' O ~ ,  (~) .X)  5'a ) 

t �9 (P4 . I s )  
Hom(P4.W6 ) (OL,o.a D mdH1 r) 

(by the Frobenius reciprocity theorem) 
K,1 L,o �9 (P4 .T6)  

2'2 H 0 m ( P 4 . T o ) ( 0 L , o . 0 K , 1 . J _  ~ J_~ (7~),lndH1 r), 
(7.18) for almost all s. 

Then the next step is to repeat the work on functors and double coset calcu- 

lations for the subgroup (P4.To), in which the subgroup H1 will play the role of 

U1 in the previous sections (particularly, in Lemmas 6.3 and 7.1). Explicitly, 

H1 =(731.U1.73) N (P4.T6) 

Then 

= hi E GSp(6, F)[ hi = a 
w 1 Yl x 2 |  " 

1 

73.H1.7~ -1 __- 

a ZXlXXXila z } 1 - Y l  w - x 2  

Yl --X4 E GSp(6, F) 
1 

a 



Vol. 101, 1997 THE SPIN L-FUNCTION 35 

and 

(7.19) 

(x4) (a 
T ( h I )  = (~ .X)(~3.hI . 'T3  I)  = r y~ 'X 

x I  

= + Yl).~ , for all hi E H1. 

8. T h e  ca lcu la t ions  on  t h e  s u b g r o u p  (P4.T6) and  (P2.T4.T6) 

Repeating some calculations done in Sections 4-7, we will get similar results for 

the subgroups P4 and (P4.T6). 

Homp~ (r, indP~ (~b.~)) 

(7.18) < . . . .  f~ ~K,1 ~L,o . . . .  (P4.T6) T) di-m I-]'Om(p4.T6)i,k~L,~ J - -  (,Tr}'lIl(1H1 

(8.1) L,o ind(~ 2"T4`T6) v) Hom(G2.T4.T6)(OL,o.eK,1.AL,o.,J" (Crl)), 

(8.2) d<m HomH2(eL,o.OK,1.AL,o.ff~, T*), for almost all s, 

where H2 = (P2.T4.T6)NH1, al = J_K'I jL '~ and jK'IjL'~ = ~1. Then 

HOmH2 (OL,o.eK,1.AL,o.y~, v) 

-- HOm(p~.T4.T6)(OL,o.eK,1.AL,o.ffl, ind(~ "T4"T6) T2) 

(by the Frobenius reciprocity theorem) 

(8.3) ~- HOm(p2.T4.T~)((~L,o-(~K,1 .AL,o.AK,I.~71, ind (P~'T4"TS) "r2) H2 

(8.4) -~ nom(p2.T4.W6)(OL,o.OK,1.AL,o.AK,I.,.7"_K'I J_L'~176 (r),  

ind(HP: "T4"Te) 7"2) 

It is true for almost all s. 

The next step is to repeat the work on functors and double coset calculations 

for the subgroup (P2.T4) -- Te, in which the subgroup H2 will play the role of 

HI. 
Explicitly, from the definition of H1 and T in (7.19), 

H2 = (P2.T4.Te) N H1 

I ( a x x z x x )  y z x4 
= h2] h2--  a z E GSp(6 ,F)  , 

1 ~1 x2 
Xl 
1 
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and for all h2 E H2, 

(8.5) 

We will have similar results for the subgroups P2 and (P2.T4.T6). We recall 

y_L,o(~) ~--- 0o, J ~ ' l ( 0 o )  : O'1, J .-L'~176 = ,~o, J-]K' l (~o)  = /]1, a n d  d1(,1) = 

~1. So far, we have proved 

Hompo (~r, ind~] (r 
< K,1 L~o K,1 L,o 

di-mH0m(P2.T4.T0)(0L,o.0K,1.AL,o.AK,1.J_ ~ ,.7"_" ,J'_~ ,J_" (~'), 

(by (8.4)) i n d ' :  T''T~ 72) 
< A 1 1 �9 (P2.T~,.T6) dim H0m(P2.T4.T6)(0L,o'0K,I'AL,o" K,I'J'r J' ' t(~l)'lndH2 72) 

(8.0) ~ HomH3 ((~L,o.0K,1.AL,o-AK,1 "~1' 72)' 

where H3 = (Po.T2.T4.T6) N H2. Then 

HOmHa ( 0 L , o . 0 K , 1 . A L , o - A K , I . ~ ,  72) 
�9 (Po T2 74 76) 

-~ Hom(po.T2.T,.T6)(0L,o.0K,1.AL,o.AK,I.~I.~I),mdH3 " " " 73) 
__ /O O A A ~-~ ,-/-1 ,-rK lrrL,o,~-K lrrL,o/Tr\  N Hom(po.T2.T4.T6)(  L,o. g,1.  L,o- K,1. 1 . J - J - ' . J -  j _  ' j _  i, ), 

(8.7) ind(P~ r3),  

for almost all s. By the definition of H2 and 72 in (8.5), we have 

H3 = (Po.T~.T4.T6) N H2 

= hal ha = 1 E GSp(6 ,F )  . 
1 Yll x ~ )  

Let us denote its character ~-3 = r2. Then for all h3 E H3, 

( x . )  (1 z) (1)  (8.8) 73(h3) = r - v l  .~ = r + Vl).~ 1 z 
Xl 1 
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We can observe (Po.T2.T4.T6) = N, which is the maximal unipotent subgroup 

of GSp(6, le) consisting of matrices of the form 

n - -  l 
1 xl 

1 Yl * 
1 u 

1 Yl * 
1 xl 

1 

and 

(OL,o.OK,I.AL,o.AK,I.~'/1)(n) : ~o(Xl 4- Yl .4- u) de__f kgN(n)" 

From the definitions of ] 1 ,  ]_K,1, 3:_L,o, j_K,1, j_L,o which were used in Sections 7 

and 8, we can observe that ,.71_,.7_K'ljL_'~176 is a representation of the 

subgroup Po = 1, hence it is simply a trivial representation. Thus, from (8.7), 

(8.9) 

Homp 6 (Tr, ind~j~ (C-X)) 

< Horn s~ , r l  , rK,1 a'L o , r K , 1  ,-rL o,71., indNa 7"3) 
di-ra Nk N . J - J -  j ' j_ J ' I ),  

~ H o m  '~  n ' l  ,~K l , - rL o,-rK 1 n-L,oIT[.~ 
- -  H 3  I, N ' J -  - ' d - '  J -  ' d _  ~ } , T 3 ) ,  fo r  a l m o s t  a l l  s ,  

where T3, defined in (8.8), is a character of H3, since X is just a character of B~ 

which is the subgroup of B2, consisting of matrices of the form bl = (*  ~ ) i n  

GL(2, F). (Recall Section 2.) Because of the uniqueness of the Whittaker model, 
the space HOmH3 (~N.JI_J_K'IjL_'~176 r3) is at most one-dimensional. 

Thus, for almost all s in the complex plane, the space Homp 6 (~, indP~ (r 

is at most one-dimensional. This conclusion will complete the proof of state- 

ment (2.5) and of Theorem 1, when we finish proving Proposition I (stated in 

Section 5). 

9. The  proof  of  Propos i t ion  I 

The symplectic group GSp(6, F) is a closed subgroup of the group GL(6, F) 

which is totally disconnected and locally compact. Therefore, GSp(6, F) itself is 

also a totally disconnected and locally compact group. 

We will be able to use some results stated and proved in chapter I of [B,Z]. 

Here, we demonstrate only the proof of part 4 of the proposition: 
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For all representations Oo c Alg(G4.T6,0L,o), 01 E Alg(S4.T6, C)L,1), and 
7r E Alg(P6), let us consider the homomorphisms: 

go:.  ~ s~'~176 e':  s~_,~176 ~ Oo, 
L 1  L 1  t gl: s ~ '  s : '  (~) - ~  ~; el: ol - , s~_'ls~+'l(ol). 

Then g~o and g] are isomorphisms, and go and gl form an exact short sequence: 

,o (9.1) o - - ~  , ISL,I (~)  ~, , jL_,o 

Proof." The homomorphisms go and gl are well-defined. Indeed, gl corresponds 

to the identity (S4.W6)-homomorphism J_L'10r ) --~ :ZL'10r ) and g] corresponds 

to the identity P6-homomorphism fl+L'l(01) --* J+L'I(01) in (5.1). Similarly, go 

and g~o correspond to the identity (G4.T6)-homomorphisms JL_'~ ) ~ flL_'~ ) 
and the identity P6-homomorphism J.~'~ --+ fl~'~ (5.2). And g~o and 

g] are isomorphisms. 

Now, the main problem is to prove that sequence (9.1) is exact. 

r Let g(A) denote an element in G4 of the form [A] , where the 
1 

matrix [AJ4x4 is an element in GSp(4, F). Obviously, #(g(A)) = #([A]) = 

a E F x, where #(g) is the similitude factor of g- (Then g(A') is in 84 if 

u([A' ] )  = 1.) 

Let l(y) be an element in L6 of the form 

(1 0 0 0 0 i / 1  1 
1 

1 

Then 

We have 

O~.,o(l(y)) = 1 and OL,l(l(y)) = Co(Y). 

(9.2) g(A-1).l(y).g(A) --= l(#([A])-l.y). 

We recall that L6 is the central subgroup of T6. Therefore, the identity (9.2) can 

be rewritten as 

(9.3) [9(A).t]-l.l(y).[9(A).t] = l(#([A])-l.y) = l(a-l.y), 
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for all [g(A).t] e (G4.T6). 

<> We have L6 ~- F, which is a totally disconnected and locally compact 

topological space. Then, we can define the sheaves on F by using only a 

base Boc of open compact subsets. 

Let (lr, P6, V.) be a smooth representation. We make V. a Cc ~ (F)-module via 

Fourier transform ](y) = f f(X)r by 
F 

(9.4) f . v  = r(])v, where lr(f)v = f f(y)Tr(l(y))vdy. 
, y  

F 

For all f l ,  f2 in C ~  (F), v in V., we have 

F F 

Then (fl.f2)~ = fl*(f2*v). Therefore, V~ is a C~(F)-module.  

Since V~ is a smooth P6-module, hence it is also a cosmooth C~ (F)-module, 

i.e. for any v in V~, there exists some open compact subset K of F such that  

1K.v = v, where 1K is some characteristic function of K. Then the action can 

also be extended to make V~ a C~ via ld, which is defined by 

(9.5) ~r'(f)v = lr(f.lK)V, for all f in C~ 

<> We want to construct the sheaf ~" of these modules. 

For all open compact subsets U of F, let .~(U) = {v E V~[1v.v = v}. If 

W c U, we define a restriction map Pu, w: f~(V) --~ f:(W) by Pv, w(v) = lw.v .  
Then ~ is a presheaf. 

Let F be the sheaf associated with the presheaf :~. Then ~(U) = ~(U) when 

U is an open compact subset. 

Now, we use the result of exercise 1.19, chapter II in [HI, where the closed 

subspace Z = {0} and the open subspace Y = F \ Z = F x . Let J:' be the sheaf 

associated with the presheaf ~'~, where 

{~(V), if0 r 
. ~ ' (U)=  0, i f 0 E U .  

We also define the skyscraper sheaf 9 c" as 

{J ro, if OEU,  
Y ' ( U ) =  0, if O ~ U .  
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Their stalks can be expressed as 

(9.6) ~ " = . ~ = ~ ' = ,  9 v ~ = 0  i f x ~ 0  and 5 r ~ = ~ - ~ = 0 ,  ~'~'=gr0. 

Then we have the short exact sequence 

(9.7) 0 - - ~ Y  -~9  c - - - * y '  ,0.  

(> If a is in F • we can consider a topological automorphism (in fact, a 

homeomorphism) a: F • ~ Aut(F),  defined as: a(a)(x) = ax for all x 

in F. 

Now we consider the action of g(A) on 5 r.  For all f in C ~ ( F ) ,  

= / 
F F 

[ f f (x)r  (by the identity (9.2)). 
q ]  

F F 

We may make a change of variables y --~ ay, x -* a- ix:  

= / f 
F F 

Let us define fa(x) = / ( a x ) .  Then we can write this result as 

.for(g(A))v = , (g(A))(A-~~ for all v in V,. 

This expression is independent of matrix [A] in g(A). Therefore, it makes sense 

to denote Ha - ~r(g(A)). Then we may rewrite that expression as 

(9.8) f~~ = H~(f~ for all v in V~. 

We will now show that this expression implies that 7 is isomorphic to a constant 

sheaf ~'1 on F • extended by zero to a sheaf on F. Indeed, let us observe 

.fa(x) = 1 ~ ax = a(a)(x) E U ~ x E a - i V  or x e a(a-1)V. 

Then f = 1v r f~ = 1,(~-~)v. Using these functions in (9.8), we have 

H~v = H~(1u.v) = l~(~-~)uII~v, for all v in 5r(U). 
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Therefore, II~v E .T (a (a -1 )U) .  In other words, II,-~ induces an isomorphism 

between .T(U) +-+ ,T(a(a)U) .  

On stalks, it also induces an isomorphism (denoted the same) which acts 

transitively on the stalks: 

(9.9) Ha-1 : Y~ ---+ ~-a~ for all x in F x . 

Therefore, all the stalks are isomorphic. Then by (9.6), .T~ = Fx -~ ~-a, = F.~x. 

~> We will prove that  ~-' and ~ "  are flasque sheaves. 

First, we check that the sheaf .T is fiasque. That is, when W C U, we prove 

that  the restriction map Pu,w: .T(U) ---+ .T (W)  defined by Pu, w ( v )  = 1 w . v  is 

surjective. 

It is obvious, since for all v in ~-(W), we have 1 w . v  = v, so 1 v . v  = ( 1 v . l w ) . v  = 

1 w . v  = v. Then v is in ~'(U), too. Therefore, the restriction map Pu, w ( v )  = 

1 w . v  = v is surjective. Thus ~" is a flasque sheaf. Then we can embed ~-(W) C 

~-(U) as subspaces of V~. 

From the definition of 7 in (9.6), we have Y(U)  = 9~(U) for all open compact 

subsets U ~ 0. In general, 

Y ( u )  = 

~sections S in Y(U),S: U ~ L J y a  such that S vanishes at 0 i f0 E U~. 
. $  

aEU 

Then S E 7 ( U )  implies S E ~ ( U ' )  for some U' C U and 0 ~ U'. But .T'(U') c 

Y(U) ,  therefore, $-'(U) = $"(U'). Hence we may assume 0 ~ U. Then Y(U)  = 

$'(U) for all U. Therefore, 7 is flasque. 

In the exact sequence (9.7), both $- and ~-i are flasque sheaves, hence ~-" is 

also a flasque sheaf (exercise 1.16, chapter II, in [H]). Now we need some lemmas. 

LEMMA 9.1:. The  following are equivalent: 

- v ~ V ( L 6 ,  OL,o),  

- 1u . v  = O, for some open compact  subset U containing O. 
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Proof: The Fourier transform of 1~, is const . l p - , .  Then 

1u.v = 0, for some open compact subset U containing 0, 

r l ~ , . v  = 0, for some n ~ cons t . l~ - ,~  = 0 

/ lr(l(y))vdy. We may make a change of variable n -* - n  

g9 - n  

/ rc(l(y))vdy = f OL,o(l(y))Tr(l(y))vdy 
~o "~ ~ , ,  

r  v ~ V(L~, Or,o) 

(by a lemma of Jacquet-Langlands, stated in section 2.33 of [B,Z]). 

LEMMA 9.2: The Stalk at O: JZo = V, /V(L6,0r,o) ,  where V(L6, Or,o) = 

((Tr(1)v - v), for all v in V, and 1 in L6). That is, 

(9.10) 3=o = 

Proof: By definition, ~'0 is the direct limit of the groups ~-(U) for all open 

compact subsets U containing 0, via the restriction maps. We denote by 2"0 = 

lira $-(U). 
"* U ~ 0  

To prove this limit is V,/V(L6,  Oo), we need to check two conditions: 

[1] Define TU: :Tz(U) ---* V,/V(L6,  Or,o) by TU = Proj o Incl, where Incl is an 

inclusion mapping and Proj is a projection mapping defined naturally as 

J=(u) ~ v. P~_~oj y./v(L~,Or,o). 

For all v in $-(U), and W C U, we must check ru(v) = TWo PU, w(V). Indeed, 

1w~ - PU, W(V) ) = 1W~ - 12~ = O. 

Therefore, by Lemma 9,1, we have ( v -  Pu, w(v)) E V(L6, OL,o). Thus 

rv(v - pv, w(v)) = 0. In other words, 

Tv(v) = w(pv, w(v)) = ~w(pv, w(v)). 

[2] Next, we check this condition: 
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I f  there exists a vector space T and 71u: -T(U) - - ~  T axe vector space homo- 

morph isms  for all open compact  subsets U such that  this diagram 

J:(U) P~'w . -T(W)  

T 

is commuta t ive .  Then there exists uniquely a homomorph i sm rl: .fo , T such 

that for aH U, we have ~u = r/o ru.  

Indeed, given v in both -T(U) and -T(W), where U, W both contain 0, it suffices 

to prove that  Ou (v) = Yw (v). Indeed, we consider the restriction map 

pu~w,v: 3=(u v w) ~ -T(u). 

It is not isomorphic, but if v E F(U)  then v E -T(U U W) and Puuw, u (v )  = v. 

Therefore, this commutative diagram 

implies that 

Then, by symmetry, 

7 ( u u  w) P~~ J=(u) 

T 

, u ( ~ )  = , u  o puuw, w ( v )  = w u w ( v ) .  

~tr(v) = ,w(v)(= , v u w ( v ) ) .  

THE UNIQUENESS: If there exists another homomorphism 7': -To , T such 

that,  for all U, we have r/v = ~?' o ru,  then we will prove ~ = rf. For all v in -To, 

there exists w v  in ~'(U) such that r v ( w v )  = v. Hence 

, ' ( v )  = ~' o w ( w u )  = , u ( w , )  = ~ o w ( ~ u )  = , ( v ) .  

Thus r/' = 7- | 

LEMMA 9.3: The S ta lk  at 1:-T1 = V ~ / V ( L 6 , 0 L , 1 )  where 

V(L6, 0[.,1) = ((rc(l)v - OLl (1 )v  ), for all v in V. and 1 in Ls) .  
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That is, 

~'1 = fl-L'l(~r) is an (S4.T6)-module. 

Proo~ By definition, 5rl is the direct limit of the groups ~'(U) for all open 

compact subsets U containing 1, via the restriction maps. We denote )vl = 

lira f ' (U).  The proof is similar to that of Lemma 9.2, except that we will use 
U~I 

the following lemma in place of Lemma 9.1. | 

LEMMA 9.4: The following are equivalent: 
- v ~ V ( L 6 ,  OL,1) ,  

- 1g.v = 0, for some open compact subset U containing 1. 

Proof." 
Then 

Let F~ be the Fourier transform of the characteristic function 1(1+~). 

F,~(x)= f r f r +y))dy 

= ~o(X) / ~o(xy) dy = ~,o(X) /1p,~(y)~o(xy) dy. 
p'~ F 

Therefore, F~ (x) = r Then 

1u.v = 0, for some open compact subset U containing 1 

l(l+,~).v = 0 for some n large 

Fn.v = 0 for some n large 

v o l ( p - n ) ) / '  1~-~ (y)r )v dy (1/ 0. 

F 

We may make a change of variable n ~ - n ,  

(1/vol(pn)) / 1 ~  (y)r dy = 0 
F 

/ r )vdy = 0 
J 

/ OL,l(l(y))Tr(l(y))vdy 

v e V(L6, 0L,1) (by the lemma of Jacquet-Langlands, loc. cit.). 
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o Now we define the space 

y ( u )  : 

{all locally constant, compactly supported sections S: U ~ U ~'a } 
a6U 

for all compact open subsets U C F x. We could extend any section S to a 

function 

S': P6(U) ' U Jra, by S ' (g)  = S (# (g ) )  = S(a) ,  
a6U 

where it(g) = a, for some a in U C F • and P6(U) = {g 6 P61it(g) 6 U}. 

Then, obviously, P6(F • ) is just P6. 

By this definition, if it(gl) = it(g2) then S'(gl) = S'(g2). 

(Conversely, given function S' ,  for all a in F x , there exists some g = g(A)  in 

P6, such that  

i t (g(A)  ) = i t (A)  = a. 

Let us define S " ( a )  = S ' ( ( g ( A ) ) .  Then S" = S'.) 

In the case when U --- F x , the following lemma holds. 

LEMMA 9.5: 

(9.12) ~'~(F • ) --- J.~'l(~-l). 

Proof: Let t? = J_L'l(lr). We will consider this representation (8, (Sa.K6),-T1). 

Then J+L'I(F1) is the space of all locally constant and compactly supported 

functions ~: P6 ~ -T'I such tha t  

(9.13) ~(s . t .p )  = 8(s . t ) .~(p) ,  for all (s.t)  6 (S4.T6) and p 6 P6. 

Particularly, 

~p(1.p) = O(1).~(p) = OL,I(/).~(p) = ~Po(y).~(p), 

by assuming I = I(y) in L6. From (9.9), we can observe an isomorphism between 

these two spaces: 

(9.14) 
(9.15) 

_ ~(g)  def 7r(g)S'(g) = YIaS'(g) = IIaS(a), where a = #(g). 

- S(a)  = S ' ( g ( A ) )  def ~ r (g (A)_ l )~ (g (A) )  = II~-i  ~ ( g ( A ) ) ,  
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where g = g(A) is in P6, such that p(g(A)) = a, and we define IL-1 = 7r(g(A)-l), 

such that the obvious conditions 

]ffI a O [ I a - - 1  = idy I and IIa-1 o IIa = id~-o 

could be satisfied (where Ha: f a  ~ $-1, 1-Ia-1 : $-1 ---~ S-a)- We need to check 

the compatibility of Ha with the group action on these two subspaces $-a and f t .  

First, we can generalize Lemma 9.3 to get the stalk S-a, for some a E FX: 

$-a de___f l i r a  f ( U )  : Vrr/V(L6, OL,1,  a ) ,  

Uga 

where 

V(L6, OL.1, a) = ((rc(l(y))v -- OL,l(l(a.y))v), for all v in V~,/ in  L6). 

Then V(L~, OL,1, 1) --= V(L6, OL,1). For all w E V(L6, @L,1, a), 

II~(w) =Tr(g(A))[rc(l(y))v- OL,l(l(a.y))v] for some v e V~, l(y) e L6, 

=Tc(l(a.y))Tr(g(A))v- OL,l(l(a.y)).Tr(g(A))v) (by (9.3)). 

Let l~(y) = I(a.y). When y runs through F x, l~(y) runs through L6. Let v' = 

rc(g(A))v. Then 

IIa(w) = [Tr(/ '(y))v'-  OI, l(/ '(y))v'] C V(L6, OL,1. 

Thus it makes sense to write 

0 " ~/ ' (L6, O L , l , a  ) . Vzr " $-a ' 0 

0 * V ( L 6 ,  I~L,1) " VTr * $-1 * 0. 

Now, we need to check two conditions: 

[1] For all (s.t) E ($4.T6) and p E P6, 

~( s.t.p) ~ f  7r( s.t .p)S' ( s.t.p) = 7r( s.t )Tr(p)S(p( s.t.p) ) = 7r( s.t )Tr(p)S(tt(p) ) 

= 7c(s.t)~(p) = O(s.t)p(p) = ffL_J(rc)(s.t)~(p) (since #(s.t) = 1). 

The function ~, which is defined in (9.14), satisfies (9.13). 
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Next, we check that  S(a), which is defined in (9.15), is a section in ~'ct (U). We 

have ~(g(A)) E Yl, hence S(a) ~f  I I~-~(g(A))  is in ~-a. 

Let some set {Ui} C 13o~ be a cover of U. For all Ui, we consider the section 

Si C J-c~(Ui) where 

= 

{locally constant and compactly supported sections S: Ui ' U 5ca }" 
aEU 

Then Si(a) = S(a) for all a E Ui. Therefore, pv~,a(Si) = Si(a) = S(a) for all 

Vi's. 

[2] The smoothness of V~ implies these two equivalent conditions: 

S is locally constant section r ~ is locally constant function. 

All the above arguments allow us to conclude ff+L'l(.~l) = .~'ct(FX). 1 

Therefore, this lemma and Lemma 9.3 will give us 5Oct (F x ) = J+L'lflL'l(Tr). By 

extending ~'~(F x ) trivially to 0, we have 

.~-; (F)  --~ ,~L' 1 J_L' 1(7r ). (9.16) 

Let 
{~o ,  ifO c U, 

5r['(U) = 0, i f0 ~ U. 

By Lemma 11.5, we have 

(9.17) 9r~'(F) = ~-o = Y~-'~176 

We define ~'c(U') = Uucu, .~(U), where the union is over open compact subsets 

U. Then 

fc(F) : U [J 
UcF UcF 

By the cosmoothness of V~, for any v in V., there exists some open compact 

subset K of F, such that lh-ov = v, or v E ~ ( K )  = 5r(K). Therefore, 

(9.18) U ,~(U) : V~ = ~-c(F). 
UcF 

From (9.7), the short sequence 0 ~ .7 "~ ) 9r .~ ~-r~ ) 0 is exact. We 

proved 5 c~ is flasque, hence by exercise 1.16, chapter II in [HI, the sequence 

(9.19) 0 ----* 3C'(F) hl,~-(F) h2,hC"(F) ~ 0 

is exact, too. Let h i = hlly,(F) and h~ = h217r Then the next lemma holds. 
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LEMMA 9.6: The following short sequence is exact: 

h I h ~ (9.20) 0 ~ ' 1 2 , 7 ~ ( F ) - - - ~ f c ( F ) - ~ 7 ~  (F) ,0 .  

Proo~ We need to check some conditions: 

- hi: Y ( F )  r J-(F) is injective. Ker(h]) C Ker(hl) = 0. Thus Ker(h]) = 0. 

Hence hi: ~-~(F) ~ ~-~(F) is injective. 

- The exactness in (9.19) gives us h2(~'t(F)) = 0. By the definition of h~, we 

have h~(~'~(F)) = h2(~-~(F)) C h2(7 (F) )  = 0. Therefore, h~(grc~(F)) = 0. 

- The last condition: h~ is surjective. For all T in ~-~'(F) = ~" (F) ,  since h2 

is surjective, there exists an S in 9r(F) such that h2(S) = T. We can choose 

S to be compactly supported. Indeed, consider some section $1 in ~-~(F); 

then (S.S1) is a compactly supported section in 5r~(F). By the definition 

of h~, 

h ~ ( s . s l )  = h 2 ( s . s l )  = ~ 2 ( s ) + h ~ ( S l )  = h ~ ( s ) + ~ ( s l )  = T + 0  = T. I 

Finally, from (9.16), (9.17), (9.18) and (9.20), we can write 

0 , ~ L  1 ~ L  1 ,  , j + L , o  (~) J + '  J _ '  I,/r) -----* 7r ~ j_L,o ,0.  

10. The  local funct ional  equa t i on  

It will be helpful to modify our notations slightly to emphasize local calculations 

in this section and for the rest of this paper. 

Let F be the global field, and Fv be a non-archimedean local field equipped 

with its ring of integers (.9v. The residue field has the order N~ = q. 

Let B2,~ = B2(F~) be the Borel subgroup of GL2,v = GL(2,F~).  Let 

(ps, GL2,v, Vp, ) = maB2,~" ,QL2~ 5"B2,~ and (Pl-s, GL2,v, Vpl_,) = ln(1B2.~" , G L ~  51_SB2,~. 

Let (Tr,, GSp(6, F . ) ,  V,o) be an irreducible, smooth and generic cuspidal 

representation as in Theorem 1. We identify the space V~ with its Whittaker 

model W~o. 

We now rephrase Theorem 1 in a simpler case. 

COROLLARY 10.1: For almost all s in the complex plane, there exists at most one 

non-trivial GL2,v-invariant bilinear form on V~ x Vp,, up to a constant multiple. 
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In other words, the space nOmGL2,.(71.v .lnoB2,~,.GL2 ~ 5B2,v)s 

dimensional, for almost all s in the complex plane. 

Proof: Let 

49 

is at most one- 

i(9) g 

describe an embedding i: GL2,. ~ GSp(6,  F~). Then the bilinear form B in 

(1.1) satisfies 

B[zr(i(g))v, p(g)w] = B(v, w), for all v �9 V,~,w �9 Vp. and g �9 GL2,..  

Thus B is invariant under the action of GL2,v. Theorem 1 gives the uniqueness 

of this bilinear form on ~v~ x Vp. | 

Let r be the Dedekind zeta function of the global field F. Then ~F = I-Iv e f t ,  

where ~F~ (S) = (1 -- Nf8) -1 = (1 - q~-~)-I at the non-archimedean places and 

are normalized gamma functions at the archimedean places. 

We recall the definition of the integral Zv(s, Wv, f~,v), where W. E W~. and 

f~,v e Vp~, in [B,G]: 

(lo.1) 

= 

(F~ (2s) Wv u z 1 
B2,~\GL2,~ F~ F 2 --U 1 

1 
g--3 x ]a[ .f~,~(g)dzdudXad9, 

where 7 = 73 (defined in Section 7). Then Zv(s, Wv, fs,v) is convergent for 

sufficiently large ~(s).  

PROPOSITION 10.2: Let Fv be a non-archimedean local field whose residue field 

is of cardinality q. Then the integral Zv(s, Wv, fs,v) defines a rational function of 

variable q-8. Hence, particularly, Z,~( s, Wv, f s,~ ) has a meromorphic continuation 

to all s. 

Proof: Let Zv(s, Vr fs,v) = Z,(s, Wv, fs,v)/r Then, obviously, we need 

to prove only that  Zv(s, Wv, fs,v) is a rational function of q-8. 



50 SAN CAO VO Isr. J. Math. 

�9 ,CL~ ~ 5~ Then the action Let Y denote the tensor product space k ~  | moB2,v' B2,~" 

F~ of GL2,v on Y can be described as 

(10.2) Fs(g)y  = Fs(g)(Wv @ fs,v) = 7r(i(g))W, | Ps(g)( fs , , ) .  

. ,GL~ v 6~ in Corollary Thus the uniqueness of the bilinear form on t~o x lnOB2 f B2,~ 

10.1 can be translated into the uniqueness of the linear form on Y = V.o | 

ln~ "GL2 " 5sB2.." L e t T s ( y ) = T s ( W v Q f s , v ) d r  Wv, fs,v) " =  Then we can check 

that  

T~( F~(g)y) = Zv(s,  Tr(i(9) )Wv, ps(9) f~,v) = 2v(s ,  Wv, f~,v) = T~(y) 

by Proposition 10.4, which will be proved later. 

There exist some function f~~ v and Whit taker  function W ~ satisfying 

(10.2a) ,Zv(S, W ~ fs~ = 1. 

That  is, T~(y ~ -- T~(W ~ | f~~ = 1. Therefore, for all but finitely many s (or 

q-~) there is a unique non-trivial linear functional T~: Y -~ C such that  

(10.3) Ts(Fs(g)y  - y) = 0 and T s ( W  ~ | f~~ ) -- 1. 

From this setup, we now can follow the ideas used to prove Proposition 10.3 in 

[G,PS]. 

Let D be a multiplicative subgroup of C which is regarded as an irreducible 

algebraic variety over C. By parametrizing z in D by z = q-S, we have the ring 

of polynomials C[D] = C[z, z -1 ] : C[q ~ , q-S]. 

Let D1 be the subset of D such that  (10.3) has a unique solution for all q-~ in 

DI. (Hence D1 is nonempty and open.) 

We now view the equations in (10.3) as a family of systems of equations for the 

dual space Y* = Homc(Y, C) by considering the collection -~ of pairs {(F~(g~)yj-  

yj, 0); (yO, 1)} indexed by some countable index set Z = {(i , j)},  for all q-~ in D1 

(since Y has a countable dimension over C). Then the system E~ has the unique 

solution T8 in Y* for each q-~ in D1. 

By definition in [Be], the family {E~ } is polynomial in q-S since all systems 

--~ are indexed by the same set Z and since, for each ( i , j ) ,  (F~(gi)yj - yj) is 

in Y, which is embedded in Y | C[q ~, q-~]. Hence it is polynomial in q-~. 
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Thus Bernstein's theorem (in [Be]) implies the existence of a linear functional 

T: Y | L > L, where L is the field of fractions of C[D], and T(y | q-S) = T~ (y) 

for all y in Y, and all q-S in D1. Therefore, T8 is a rational function of variable 

q-S and so are 2~(s, W., f~,.) and Z.(s,  W., fs,.). | 

The immediate result of Corollary 10.1 is local functional equation. 

Let Ms,.: l n O B 2 ,  ' B 2 , .  B2,. ---+ muB2.( be a normalized intertwining 

operator defined as 

(M.,Js,.)(g)=jf.,.((l -i).(I Xl).g)dx 
F. 

for all fs,v in Vps. This proves that t~s -~ Vm_" (Jacquet-Langlands' theorem). 

PROPOSITION 10.3 (The local functional equation): Assume that F ,  is a non- 

archimedean local field whose residue cardinality is q. Then there exists a mero- 

morphic fimction %(s)  such that, for almost all s, 

(10.4) Z.(s ,W~, fs , . )  = 7.(s).Z~(1 - s ,W. ,Ms, . fs , . ) .  

In fact, 7~(s) is a rational function of q -8. 

Proof Let us denote/1-8,~ = Ms,~f~,~. Since both integrals Z.(s,  1~%, f~,.) and 

Z~(1-s,  W~, / l -s , . )  are GL2,.-invariant bilinear forms on V~. xVp. ~_ V~ xVpl_., 

Corollary 10.1 asserts that there exists a factor % = -/~(s) such that  (10.4) could 

be satisfied. 

It is a meromorphic function and, moreover, a rational function of q-~, because 

the integral Z,  is also, by Proposition 10.2 above. | 

�9 By (10.2a) in the proof of Proposition 10.2, it remains to prove the following: 

PROPOSITION 10.4: For any non-archimedean local place v, there exist a 
o o �9 . G L 2 , .  ~s SUCh that Whittaker function W~ E W ~  and a function fs,. E lnClB2,. B2,~ 

2 . ( s ,W~176  =_ 1. 

Proof We denote Kv = GL(2, (9,), the maximum compact subgroup of GL2,,, 

and observe that  B2, , \GL2. ,  N K , ) \ K , .  Then we can rewrite the integral: 

2~(s, Wv, fs,v) = Z.(s, Wv, fs,v)/@~ (2s) 
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00.5) 
(B~,~nK~)\K~ F~ F~ 

a 

a 

u z 1 
- u  1 

1 

x lal"-3.fs,v(k)dzdudXadk. 

/ 

*STEPI:  LetS(Fv)  be the set of all Schwartz functions u on F, ,  u : F .  >C. 

There is some Whittaker function W1 in W~ such that WI(1) # 0, and then 

it can be normalized to WI(1) = 1. 

�9 STEP 2: Let us define a function Al(a) = Wl ( diag( a, a, a, l, l ,1) ). Then 

AI(1) = 1. Suppose a Schwartz function Ul in S(Fv) is chosen such that its 

Fourier transform, defined by kl(a) = fF. vl(x).r  (which is also a 

Schwartz function in S(Fv)), is supported on a sufficiently small neighborhood 

of 1 in O~ x, and fo~ ul( a) 'Al(a)dxa = 1. 

We define a Whittaker function W2 in W~ by [1 ) 
1 

(10.6) W2(g)= f l u l ( x ) . ( p  1 x 1 W1) (g) dx. 

1 
1 

Then 

J W2 (diag(a, a, a, 1, 1,1)).lalS-3d• 

F~ 

j j  l a i x  = Ul(x).W1 1 1 

F~ F~ 1 1 

1 1 

X ]a]S-3dxdXa 

= f f L~l lXloW1 I 1 a.x a 

t 1 1 
F~ F~ 1 1 

1 1 
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• [al~-3dxd• 

= f f ul(x)'r176215 
F x F~ 

(10.7) = / ~,l(a).Al(a).,a,S-3dXa= / s l. 
F~ O~ 

�9 STEP 3: Let 

a 

A2(z) = / W2 az 1 "lalS-3d• 
F~ 1 

1 

Then by (10.7) we have As(0) = 1. Suppose that u2: Fv , C is a Schwartz 

function in S(F~) which is chosen such that its Fourier transform, defined by 

I)2(z) = fF~ v2(x).r is supported on a sufficiently small neighborhood 

of 0, and fF. i2(z).A2(z)dz = 1. 
We define a Whittaker function W3 in YV.. by 

(10.8) 

((1 
w3(g) = f .2(x). p 

F~ 

1 x / /  
1 x 1 w~ (g) dx. 

1 
1 

Then 

�9 S T E P  4 :  

a 

a 

z 1 

Let 

1) 
a 

a 

~t z 

- u  

.lal s -3  d• dz = f ~2(z).A2(z) dz 
F~ 

11/ .lalS-3 dzdXa. 

= 1 .  
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Then by (10.9) we have A3(0) = 1. Suppose that v3: Fv ~ C is a Schwartz 

function in $(Fv) which is chosen such that its Fourier transform, defined by 

t53(u) = fF~ ~'3(X).~'o(U.X)dx, is supported on a sufficiently small neighborhood 

of O, and fF~ f'n(u).A3(u) du = 1. 

We define a Whittaker function W4 in W~ by ((11 
/ 1 (10.10) vc4(g)= ~3(x). p 

F~ 

Then 

(10.11) 

iJS., ( a 
F~ F .  F~ 

a 

a 

u z 1 
- u  1 

(g) dx. 

) .[al ~-3 dXa du dz = f f,3(u).A3(u) du = 1. 

F,, 

1 

�9 STEP 5: Recall the representation p which acts by right translation on the 

Whittaker space W~.  Let W5 be a Whittaker function in W~. such that W5 = 

p('y)W4, hence we have W4 = p(V-1)Ws. Then (10.11) becomes 
a 

(10.12) 

F~ F .  F .  

a 

u 

a 

z 1 
h / t  1 1) 

Let us define a subgroup of Kv, 

Kv(p N) = 

�9 S T E P  6: 

d X a d u d z =  1. 

{(ac  b )  E K v ' w h e r e c = 0 ( m ~ 1 7 6 1 7 6  

Then (B~,~NKv) C K~(fgN), obviously. We choose a function f~~ v which satisfies 

(10.13) { 5s Yl x = lyl/Y218, if a E Kv(pN), 

0, 
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o �9 . G L 2  5s Hence Then f .... is a smooth function in the space maB2,[ v B~,.' 

(10.14) fj,.(k)~ - = { 01 otherwise.if k e K~,(pN), or 1r E (B2,. N K . ) \ K . ( v N ) ,  

Then recalling (10.5), for any Whittaker function Wh in W~., we have 

l 
a a 

S iS ( a 
2 . ( s ,  wh,  L%) = wh u z 

(B2,,,OK.)\K. F~ F~ --U 

• [a[~-3.f~,,([c)dzdud• die 

i i i {  ~ 
= (p(i(lc))Wh) u z 1 

F~ F~ (B2, .AK.) \K.(p  N) --U 

(10.15) • la] s-3 dz du d• dlc. 

1 
1 

1 

1 

1/, 

�9 STEP 7: Using the Iwahori factorization, we have 

Then for any Wh in W,~, 

i (p:i(k))Wh)dk= S (p[i(1 c 

(B2'vNKv)\Kv(PN) C E ~9 N 

1) ]Wh)dC=q-N.Wh, 

if N is chosen sufficiently large, since Wh is locally constant. Take Wh = qN.w5, 
where W5 was defined in step 5 above. Then 

(10.16) f (p(i([c))Wh) die = W5. 
(B2,~MK~)\K~(~ N) 

Thus the integral in (10.15) is equal to that in (10.12). 

Let W ~ = Wh. Then Zv(s ,W ~176 = 1. It completes the proof of 

Propositions 10.4 and 10.2. I 
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CHAPTER II: THE POLES OF THE GLOBAL SPIN L-FUNCTION 

11. Meromorph ic  cont inuat ion of the  integral Zv(s, Wv, f~,v) at 

a rch imedean  places 

We will prove a proposition which will play the role of Proposition 10.2 for 

archimedean places. 

Let Fv be an archimedean local field. The maximum compact subgroup K~ 

is 0(2, R) or U(2, C), depending on Fv being a real field R or complex field C, 

respectively. 

PROPOSITION 11.1 (Meromorphic continuation of Z. (s, W,, fs,v) at archimedean 

places): The integral Z~(s, Wv, f~,v), which is defined in (10.5), 

/ / /  / a .,,f_ 1.i(~) Zv( s ,  Wv ,  = u z 1 

(B2,vNK~)\K. F~ x F~ --U 1 
1 

(11.1) • [a['-s.f,,,(lr dzdudXadk, 

converges for sut~ciently large ~(s) and has a meromorphic continuation to all s. 

To prove Proposition 11.1, we need to estimate the Whittaker functions Wv. 

�9 PART A: ESTIMATES FOR THE WHITTAKER FUNCTIONS.  We 

will consider some subgroups of GSp(6, F,) .  Let K6,v be the maximum compact 

subgroup and N~, be the unipotent radical subgroup. We define the character 

II/N~ on  N,  as in Section 10.F. 

Let 5n6 be the module of the Borel subgroup B6,v and Dv be the subgroup 

consisting of all diagonal matrices of the form 

(11.2) a(yo, Yl,Y2, Y3) = " I y~ YoYlY2 YoYl 
YO 

yoY21 
--1 --1 ~ 

YoY2 Y3 / 

where all Yi E Fv. Let ED be a finite set of characters X of Dr. Each character 

X has the form 
3 

(11.3) X(a(yo, y2, ya)) = 1-[ x'(Y )[Yil 
i----O 
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where Xi is a character of module one and ni is real. 

Let E be the set of finite functions y on F 4. Then each function y (a )  is a 

finite linear combination of functions of the form 
3 

(11.4) ,u Yl, Y2, Y3)). n l~ tyjh 
j = l  

where mj 's  are positive integers. Then E is also a finite set. 

PROPOSITION 11.2: For every Whittaker function W~ in )4;~o , there exist Schwartz 

functions ~i ' s  in S(F  a x K6,v) such that 

(11.5) W,,(n.a.k) =*No(n).~/:(a). ~ ~i(yl ,y2,y3;k) .Yi(a) ,  
YiEE' 

where a = a(yo, yl,Y2,Y3) E D, ,  k E K6,v and n E N, .  

Proof'. The proof is the same as in IS] which was inspired by those works in 

[J,S.1], [J,S.2] and [J,PS,S]. | 

�9 PART B: P R O O F  OF P R O P O S I T I O N  11.1. By the Iwasawa decomposi- 

tion, we have the following identity: (a )/100000) 
a 1 cl * * 0 

a 1 c2 * 0 
u z 1 1 cl 0 

- u  1 1 0 
1 1 

(11.6) 

(11.7) 

for some k ~ Kr 

ci = - z u / ( 1  + uS), 
(11.8) 

= (1 + u2) -1/2 and 

�9 diag(a, a6, aA, A -I ,  ~-1, 1).k 

= n(a, u, z) .a(A-1,  A~a, ~Z~-', ~- l ) .k ,  

c2 = za / [ z  ~ + (1 + u~)~], 
a = (1 + u ~ + [z2/(1 + u2)]) -1/2. 

Let k~ = k.7-1.i(k); then k~ is in K6,v since both 7 -1 and i(k) are in K6,v. 

Applying the identity in (11.7) to Proposition 11.2, we have [aa ) / 
a .7_1.i(~) Wv u z 1 

- u  1 
1 
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=- l/I~(n(a,u,z).a(A-1, A2a, SA-1,5-1).k/7-1.i(k)) 

1/2 [ = q2N,,(n(a,u,z)).6B6 (a). E q2i(y,,y2,Y3;k.y) 
Y i E E  

M 3 

i=1 j = l  

(where Yo = A -1, Yl = A2a, Y2 = 6 A - l ,  Y3 = 6-1; and for the next 

step, we use a simple arithmetic formula: the power log '~ la.bl is a finite linear 

combination of products of the form (log ml lab log m2 Ibt), with all positive integers 

ml + m2 = m) 

3 

----- qJN~(n(a'u'z))'6B/: (a)" Z ( q2i(yl'y2'y3;k~)'lalc~'lAIc'2"161'~3" n Xt(yz) 
SPREE l=o 

(11.10) • E Cz. log ~ ]a].log z2 ]A].log z3 ]6]), 

(#i ,~2,#3) 

where all /3~'s are positive integers and both ~ ' s  are finite sums. Then the 

integral Z~(s, Wv, f~,~) in (11.1) is a finite linear combination of terms of the 

f o r m  

~--- . 1/2 k 

K6,~ (B2,.NK~)\K~ F~ F2 

3 

• H Xt(Yt)'lal~+'~'lAl~']6]':'3" l~ la]" l~ IAI" l~ 161 
l : o  

(11.11) • f~ ,~(k)dzdud•  

where, for n(a, u, z) expressed in (11.6)-(11.8), we have 

( -zu za ) 
(11.12) k~Nv(n(a ,u ,z ) )=r  ~ + z 2 + ( l + u 2 )  2 ' 

where we defined ~o(X) = e 2~i~(x) for arehimedean places. Now 6~/:(a) is of 

the form ]aP~.l/Xl~;.15p;, where ~(a~) > 0. Thus it can be absorbed into this 

product: 

3 

Ej(a, u, z; k.~) = ~j(Ya, Y2, Y3; k.~). n Xt(Yt)'[al'~'lAl~2"161'~3" l~ [AI" l~ I~1' 



Vol. 101, 1997 THE SPIN L-FUNCTION 59 

where Yl = aA 2, Y2 = 5A -1 and Y3 --- (~-1. 

From the expressions of (f and A in (11.8), it is not difficult to observe that 

Ej (a, u, z; k~) is still a Schwartz function. Therefore, we can simplify the expres- 

sion of Yj(s) to 

~](s) = / f / ff [~N~(n(a,u,z)).Ej(a,u,z;kT) 
K6.~ (B2,~NK~)\Kv F~ F~ 

(11.13) • [a[ ~. log • la]f~,v(k)]dz dudXa dk dk. 

Therefore, in order to prove the convergence and meromorphic continuation of 

the integral Z,(s, W,, f~,~) = ~jeJ Yj(s), where J is some finite index set, it 

suffices to prove those properties of integrals of each summand Yj (s). 

We recall that k9 = k.7-1.i(1r and k runs in some subset K '  of the subgroup 

K6,v. For fixed a, u, z, s, 

Ih'---- / / Ej(a,u,z,k~).f~,~(lr d[c dk 
K' (B2,~nK~)\K~ 

K6,. (B2,v CIK~)\Kv 

The latter integrals converge because they are integrals of smooth functions on 

compact domains. Therefore, IK also converges to some function Tj(a ,  u, z; s) 

which is still a Schwartz function on F 3 of variables a, u, z and a smooth function 

of variable s. Then, we rewrite 

(11.14) Y j ( s ) = / f f  / q~N.(n(a,u,z)).Tj(a,u,z;s).lalS, log~]aldzdudXa, 
F.  F~ F~ x 

where ~ is a positive integer. 

Suppose for definiteness that Fv = ~. Then it suffices to consider the integral 

of the following form: 

(11.5) 
OO OO OO 

0 0 0 
0 0 0 0 0 0  

/ f / c o - z u  z 2+(lza 2 : ( 1-~u2 + .Tj (a, u, z; s).aS-l.logZ(a) dz du da. 
0 0 0 
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(When Fv = C, we can observe easily that all the extra terms and integrals can be 

absorbed in the product (Tj(a, u, z; s ) .a ' - : ) ;  thus there is no loss of generality.) 

Now we partition Yj (s) into two integrals: Yj (s) = Y1 (s) + Y2(s), where 

1 oo c~ 

i i i - "  Yl(S) = @o(1-~u2-+z2 + (i + u2)2 .Tj(a,u,z;s).aS-:.log~(a)dzduda, 
o o o 

and 

OO OO OO 

i i s - "  Y2(s) = @ o ( ~ + z 2  + (l + u2)2 .Tj(a,u,z;s).a'-l. logZ(a)dzduda. 
1 o o 

Then 
O(3 O(3 

o 

converges for all s because the Schwartz function Tj  (a, u, z; s) approaches 0 faster 

than any polynomial of variable a, and the integrals w.r.t, variables u and z are 

convergent. We also have 

l O o  O o  

o o o 

1 

= f f~(a).laS-:l.I loga(a)l da, 
0 

where ~2j (a) is a smooth function of a. This integral converges when ~(s) is 

sufficiently large. Therefore, Yj (s) is convergent for ~(s) sufficiently large. 

Now we will prove the existence of a meromorphic continuation of II: (s) which 

will imply the same for Yj (s). The integral 

(11.16) 
O C  O O  

l i  +-z, o(7-r + 
0 o 

z~ ) 
z 2 + (1 + u2) 2 .Tj(a, u, z; s) dzdu 

converges to a smooth function G(a). The Taylor expansion near a = 0 gives us 

(11.17) 
N-I 

G(a) = ~ Ck.a k + n(a), where n(a) = O(aN), for some large N. 
k = 0  
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Then 

N - I  1 1 

(11.18) Yl(S) : Z Ck 'Ja '+k- l ' l~176  
k=0 0 0 

By Lemma 11.5 proved below, each term in the right hand side of (11.18) has a 

meromorphic continuation to all s, and so do Yl(s) and Yi(s). This completes 

the proof of Proposition 11.1. | 

LEMMA 11.5: For any integer ~ > O, the integral Q(s, 13) : f l  aS_l. log~(a)da 

has a meromorphic continuation to the whole complex plane. 

Proo~ Integration by parts then gives us 

a = l  - 1). (11.19) Q(s,~) = -~ a-~o s 

We have 

aS a = l  aa 

R(s, 13) = --.s l~ a-~o -- a-~01im --.s l~ = 0, when N(s) >_ 1. 

Therefore, the continuation of Q(s,/~) will depend on that of Q(s, ~ - 1). 

This recursive relationship reduces to proving meromorphic continuation of the 

integral Q( s, O) : f~ a 8-1 da, which is already known. | 

12. Non-vanishing of the  integral  Zv(s,W~, f,,v) at a rch imedean  places 

Now we will prove a proposition which will play the role of Proposition 10.4 for 

archimedean places. Let Fv be an archimedean local field and K~ = 0(2, R) or 

U(2, C) depending on Fv being real R or complex C, respectively. 

PROPOSITION 12.1: Let v be an archimedean local place. For any so fixed, 

there exist a Whittaker function W ~ E W ~  and a K~-finite function fo,~ E 

l n ~  , .  ~ G L 2  ~ ~SB2,~ SUCh that the meromorphic continuation of the integral 

(B2,~NK~)\K~ F x F~ 

(12.1) 

a / a .,y_l. i 
u z 1 

--u 1 
1 

x lar-3.]~ ) dzdud• 
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does not vanish at s = So. 

Proos 

�9 STEP 1: Let S(Fv) be the set of all Schwartz functions v: F ,  ----* C. 

There is some Whittaker function W1 in the space W.o such that WI(1) r 0, 

and then it can be normalized to W1(1) = 1. 

�9 STEP 2: Let A : ( a ) =  Wl ( diag( a, a, a, l, l,1) ). Then 

(12:2) AI(1) = 1. 

For any Schwartz function ul in S(Fv),  its Fourier transform, defined by 

i : (a )  = fF~ vl(x).r is also a Schwartz function in S(F~,). We define a 

Whittaker function W2 in W. v by 

(12.3) W2(g) = / Vl(X).(p 
F,j 

1 
1 

1 x 

1 
1 

1 

w1)(9) dx. 

First, we assume that ~(So) is sufficiently large. Then by the same manipulation 

in step 2, Section 12, we can work on the following convergent integral: 

~ W2(diag( a,a'a'l ' l ' l)) ' 'a'~~ dxa = / f v:(x)'r176176 dXa 
v 

FffF* 

(12.4) = / s176 d• 

F~ 

CLAIM: We can choose some Schwartz function Vl such that the integral (12.4) 

does not vanish. 
Indeed, if not so, then the integral (12.4) has to be 0 for all Schwartz functions 

vl in S(Fv).  It forces Al(a).]a] s~ .= 0 for all a. When a = 1, this gives 

AI(1) = W:(1) = 0 which contradicts the result (12.2). Thus, there exists some 

function v: such that W2 defined in (12.3) satisfies 

[ W~(diag(a, a, a, 1, 1, 1)).lal ~~ d• r O. (12.5) 

F~ 
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Moreover, we can modify the function vl such that 5t approaches 0 rapidly when 

a --+ 0. Then the integrals in (12.4) are convergent for all so. Therefore, the 

result (12.5) is also true for all so. 

* STEP 3: Let  

A2(z; So)= w2 (a 
a 

a 

z 1 
1 
1) "[a['~ d• a" 

Then by (12.5) we have 

(12.6) A2(0; So) # 0, for all  so. 

We need the following lemma. 

LEMMA 12.2: The function A2(z; 8o) has a meromorphic continuation in variable 

So and, for a fixed so, it is an analytic function of variable z. 

Proof'. We can estimate the function Whittaker W2 by the same steps as in 

(11.6)-(11.13), with u -- 0. Then 

za 

JE,TF~ 

where -Zj ( a, z; k~) is a Schwartz function, and f l  is some finite index set. There- 

fore, A2 is an analytic function of variable z; and the proof of meromorphic 

continuation will follow the same arguments as in the proof of Proposition 11.1. 
| 

Let u2: F~ ~ C be a Schwartz function in $(Fv).  We define a Whittaker 

function W3 in VV~ by 

(12.7) w3@ = / ~:(x).(p 
F~ 

1 
1 - -x  

1 
1 

X 

1 
1 

) w~)(~) d.. 
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Then the same manipulation in step 3, Section 12, gives us 

a a 

a 

z 1 
F x F~ 1 

. [alSo-3 d • adz = f $'2 (z).A2 (z; so) dz, 

F~ 

1 

for ~(so) sufficiently large and #2 is the Fourier transform of v2, defined by 

~2(z) = f ~2(x).r dx. 
. 1  

F~ 

CLAIM: We can choose some Schwartz function v2 such that the integral (12.8) 

does not vanish. 

Indeed, if not so, the integral (12.8) has to be 0 for all Schwartz functions v2 

in S (F . ) .  It forces A2(z; so) = 0 for all z. When z = 0, this gives A2(0; so) = 0 

which contradicts the result (12.6). Thus, there exists some function v2 such that 

W3 defined in (12.7) satisfies 

a a 

 129) ~ 
z 1 

F~ F~ 1 
1 

.la]'~ d• # O. 

Moreover, we can modify the function v2 such that $'2 approaches 0 rapidly when 

z ~ oo. Then the integrals in (12.8) are convergent for all so. Therefore, the 

result in (12.9) is also true for all so. 

�9 S T E P  4: L e t  (a ) a 

a 

A3(u; So) = ~ u z 1 

- u  1 
1 

.[a]~o-3 dz d• a. 

Then by (12.9) we have 

(12.10) A3(0; so) # 0, for all so. 
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LEMMA 12.3: The function A3(u; So) has a meromorphic continuation in variable 

so and, for a fixed So, it is an analytic function of variable u. 

Proo~ We can estimate the function Whittaker W3 as in (11.6)-(11.13). Then 

j e f l F ~  F ~ 1--'-'~"~ + z2 q_ (l q_ u2)2 ) .Zj(a,  u, z; k-r) 

x Jar ~ log ~ [a[ dzd• 

where Ej(a, u, z; k~) is a Schwartz function and J is some finite index set. Then 

Aa is an analytic function of variable u. The proof of meromorphic continuation 

will follow the same arguments as those in the proof of Proposition 11.1. | 

Let v3: Fv ~ C be a Schwartz function in S(F.).  We define a Whittaker 

function W4 in W~ by 

(12.11) W4(g) =F~ / v3(x).(p ( 1  

1 x 

1 
1 

1 
1 

W3)(g) dx. 

Then the same manipulation in step 4, Section 12, gives us 

(12.12) 

/ / /  o 
W4 u z 

F~ F~ F~ --U 
) .[a[ 8~ dXa du dz = f ~'3(u).A3(u; so) du, 

F~ 

for N(so) sufficiently large and v3 is the Fourier transform of v3, defined by 

F~ 

CLAIM: We can choose some Schwartz function v3 such that the integral (12.12) 

does not vanish. 

Indeed, if not so, the integral (12.12) has to be 0 for all Schwartz functions v3 

in 8(Fv). It forces As(u; so) = 0 for all u. When u = 0, this gives A3(0; so) = 0 
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which contradicts the result (12.10). 

that W4 defined in (12.11) satisfies 

i i i  ~ 
(12.13) W4 u z 

F~ x F~ F~ - -U 

Thus, there exists some function v3 such 

1 1 "lal~o-3d• # O. 

Moreover, we can modify the function v3 such that ~3 approaches 0 rapidly when 

u ~ oc. Then the integrals in (12.12) are convergent for all So. Therefore, the 

result in (12.13) is also true for all so. 

�9 STEP 5: Let W5 be a Whittaker function in W.~ such that 14/5 = p(7)Wa, 

hence W4 = p(7-1)Ws. Then (12.13) becomes 

(aa /i sss { " .+, . , . , .~ (12.14) W5 u z 1 

F~ F .  F~ - -U 1 
1 

for all so in the complex plane. 

�9 STEP 6: We recall the definition of Z~(so, W~, ]So,~) in (12.1): 

i is{ ~ 
Z.(so, Wv,fso,V) = Wv u z 1 

( B 2 , . O K ~ ) \ K .  F~ x F~ - -U I 

1 

(12.15) x laro-Z.$,o,.(k) dz du d• 

Now two archimedean places will be considered separately. 

Real place: K~ = 0(2, R). Then 

.. (. .~176 a,)l~ ~1a,:+1 / 

dX a du dz # O, 

.7-1.i(~) I 

tk. 

and Z = {+I} is the center of the subgroup SO(2, R). (I is the 2 x 2 identity 

matrix.) Thus 

~ S / "  cosO s in0)  I } 
(B2,v~K.)\Kv -~ T.\O(2,  R) -~ Z\SO(2,R) _ [ ~ , - s i n 0  cos8 0 < 0 < ~r . 
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Let (aa )l //  { a z(O) = W5 u z 1 "7-1"i 

F x F~ - -U 1 
1 

(12.16) x lal s~ dzdud•  

cos 0 sin 0 ~ ] 
- s inO cosO] J 

Hence by (12.14), 

(12.17) z(0) r O. 

The representation p, which acts by right translation on the space Y~, ,  satisfies 

Therefore 

(12.18) z(O + 7r) = z(O). 

Thus in the Fourier expansion z(O) = ~ _ ~  an.e in~ we have an = 0 if n is odd. 

Hence there exists some even N such that 

(12.19) 0 ?~ a N  = e-iNO z(O) dO. 

We choose the function f~o,V = f~~ which satisfies 

(12.20) fj~ X)( COSO sinO)] =e_iNO~s o (Yl X) 
Y2 " ~ . - s i n 0  cos0 �9 B,,. Y2 ' 

where N is the even integer in (12.19). Then f~~ is a well-defined smooth 
�9 . G L 2 .  

function in the space maB2, ' 5 ~ . .  Let Wv = W5. Then, from (12.15) and 

(12.16), we have 

(12.21) 

7r 

o /o(..so.,.;).<,,,, 
Z.  (so, Ws, f;o,.) = f~~ - sin 9 cos 

0 
7T 

= / e -iN~ dO = 7r.aN ~s O. 

0 
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Complex place: 

{ ( 2 ~  b ) ( a l  )l,a,2+,b,2=1;,al,=,a2,=1}. Kv = U(2, C) = 5 " a2 

Let 

Then Tv is the maximum torus subgroup and 

{ (2~ b)la12+,b,2=1} T . \ K ~  - SU(2. C) - k = a 

The center of SU(2, C) is just Z = {+I}.  We define a function z on SU(2, C): 

(12.22) 

a 

it 
a 
z 1 

--it 1 
1 

. '~-l.i(k) } x lal "~ dz du d• 

We have z(1) ~ 0. Similar to (12.18), we have z(-/r = z(k). Thus z is a 

Z-invariant function in the space L2(SU(2, C)). 

Let ((~i, Va,) be a set of irreducible, finite-dimensional (hence unitary, by a 

properly chosen Hermitian inner product in V~,) representations of SU(2, C) such 

that the center Z of SU(2, C) acts trivially. 
�9 2 matrix i of Va i and consider m i We can choose an orthonormal basis vl,..., Vmi 

coefficients of the form of the Hermitian inner product (ai([r v~) in the space 

V~, for all k ~ SU(2, C). 

By the Peter-Weyl theorem, the union of these matrix coefficients over all ai 's  

(in fact, only over the equivalent classes of irreducible unitary representations) 

forms a complete orthonormal basis for the space L2(SU(2, C)). 

We can take a matrix coefficient t which is not orthogonal to z (because, if 

otherwise, z must be identical to 0) and also satisfies the same condition as on 

function z above: t ( - k )  = t(/r Then 

(12.23) / z([z).t(k) d[z ~ O. 
sv(2,c) 
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We choose the function fso,~ = fjo,. which satisfies 

69 

Y2 

�9 . G L 2  v Then f~~ ~ is a well-defined smooth function in the space maB2,j 6 ~ , .  Let us 

choose W~ = Ws. Recalling (12.15) and (12.22), we have 

o f fs.o(k)z(k)dk f (12.25) Zv(so, W5, fso.V) = ~ - - = 

su(2,c) su(2,c) 

This completes the proof of Proposition 12.1. | 

13. T h e  loca t ion  of  t h e  poles of  Ls(s,  ~r, spin) 

We recall the global spin L-function introduced in Section 0: 

(13.1) Ls(s,  re, spin) = IX  iv(s ,  7r., spin). 
vr 

THEOREM 13.1: Let r be an irreducible, smooth and generic automorphic 

cuspidal representation of the symplectic groups GSp(6, F). The possible poles 

of the global spin L-(unction Ls(s,  7r, spin) are only simple poles at s = 0 and 

s = l .  

Proo~ For all v r S, by the theorem 1 in [B,G], we have 

(13.2) Z~(s, Wv, f.,~) = L.(s ,  7r~, spin). 

Then 

Z(s ,W,  fs) =- I I  Z ~ ( s , W ~ , f , , . ) =  H L . (s , r . , sp in) .  I-I Z . (s ,W~, f . ,~)  
all v v~8 yes 

(13.3) = i s ( s ,  Tr, spin). 1-[ Z , ( s ,W, , f~ . , ) ,  
yES 

where L = l-[~n, (fs,,), and the Whittaker function W = 17Ln~ w , .  

For each non-archimedean local place v E S, Proposition 10.4 allows us to 

choose local data W~ ~ and fo.~ such that ,~(s ,  W ~ fo.,) = 1 for all s. Then 

Zv(s, W ~ f~ ) ---- r = (1 - Nv2") - '  r 0. 
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Similarly, for each archimedean local place v 6 S, Proposition 12.1 gives us the 

choice of local data W~ ? and fo, v such that, for any s, Z,(s ,  W ~ f~'~) ~ O. 

Thus at each s, we can choose the local data W~ and f o  's, for all v 6 S, 

such that the finite product l-I~es Zv(s, W ~ fo,,) does not vanish. 

Then, by (13.3), the poles of Ls(s ,  7r, spin) are exactly the poles of the integral 

Z(s,  W ~ fo),  where 

z:IIJ vl]zo and wo:l]wol-Iw: 
vr v6S v~S v6S 

Again, by Theorem 1 in [B,G], the possible poles of Z(s,  W ~ fo) are only simple 

poles at s = 0 and s = 1. Therefore, they are also the possible poles of the global 

spin L-function Ls  (s, 7r, spin). | 
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