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ABSTRACT

In this paper, we will study some essential analytic properties of the “spin”
L-function on the symplectic group GSp(6) (which is associated with the
eight-dimensional spin representation of the L-group Gspin(7, C)), namely,
uniqueness of a bilinear form on an irreducible admissible representation
of GSp(6) x GL(2), local functional equation, and meromorphic contin-
uation, non-vanishing properties at non-archimedean places as well as at
archimedean places.

Consequently, we will determine the location of the possible poles of the
global spin L-function of a generic automorphic cuspidal representation of
GSp(6).
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0. Introduction

We will prove here some essential analytic properties of the spin L-functions on
the symplectic group GSp(6), which is associated with the eight-dimensional
spin representation of the L-group Gspin(7, C).

At non-archimedean places, we will prove propositions about uniqueness of
a bilinear form on an irreducible admissible representation of GSp(6) x GL(2),
local functional equation, meromorphic continuation and non-vanishing property.

At archimedean places, we will also prove some analogous propositions about
meromorphic continuation and a non-vanishing property.

Consequently, we will determine the location of the possible poles of the global
spin L-function of a generic automorphic cuspidal representation = of GSp(6).

We define this L-function as an Euler product:

Lg(s, m,spin) = H L, (s, m,,spin),
vgSs
where S is a finite set of places (including archimedean places) such that each
place v € S is unramified.

For each place v ¢ S, let O, be its ring of integers. This ring has a unique
maximal ideal p,. Then the cardinality of the residue field is ¢, = |0, /ps|.

The connected L-group YG° of GSp(6,F)(6) is Gspin(7,C) which has an
irreducible 23-dimensional spin representation r,: Gspin(7,C) — GL(8,C).

By the Satake isomorphism, there is a bijection between 7, and “G°-semisimple
conjugacy class t, in LG,.. Thenr,(t,) has eight eigenvalues of the form o} o Jaty.
Then the local L-function (where v € S) is defined by

Ly(s,m,spin) = J[ (1 -eflefiole )" = detlls — ro(t.)g, ],

v,1
eight factors
where I3 is the 8 x 8 identity matrix.
In the first chapter, we will deal with non-archimedean places. Let F be
a non-archimedean local field, let m: GSp(6,F) — End(V,) an irreducible,
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smooth and generic cuspidal representation of GSp(6, F) and let p: GL(2,F) —
End(W,) be the representation indgl‘

2

duction, where g, is a modular character of the Borel subgroup B, of GL(2, F).

(2’F)(5“’Bz) obtained by nonnormalized in-

Theorem 1 will show the uniqueness of a bilinear form B(v, w) on a represen-
tation of GSp(6,F) x GL(2,F) which satisfies

I XY g
B l:ﬂ' I X g v,p(g)w] = o(trace(X)).B(v, w),
1 g

for all g in GL(2,F), v € V; and w € W,, where 9, is some fixed non-trivial
unitary additive character of F, and the matrices I, X, X', Y are 2 x 2 matrices

whose entries are in ¥ and I is the identity matrix.

Now let
I X''Y by
U, = {U1 S GSp(G,F)l Uy = I X by },
I by
where

b€ Bl = { (* I) eGL(2,F)}.

Let (X)) = ¥, (trace(X)) and x be the restriction on BY, of the modular character
Xo = 63, of the Borel subgroup Bs.
Let Pg be a subgroup consisting of matrices of the form

* * *
( GSp(4, F) *)
1

in P12 which is the standard maximal parabolic subgroup of the symplectic group
GSp(6,F) whose Levi factor is isomorphic to GL(1,F) x GSp(4,F). These
subgroups will be described explicitly in the next section.

Thus the problem can be reduced to proving that:

For m an irreducible, smooth and generic representation of GSp(6,F), the
dimension of the space Homp, (np,, indg“l (v.x)) is at most one.

The essential tools used are Jacquet functors and their adjoint functors. We
will state and prove some important properties of these functors which are similar
to those in proposition 5.12 in the paper of J. Berstein and A. Zelevinsky [B,Z].
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These functors help to reduce from working on the subgroup Pg, through
several stages, to working on the symplectic subgroups of lower dimension and
their parabolic subgroups.

The analysis here is unusual because we will do the above descent through a
series of parabolic subgroups similar to the “derivatives” of Berstein-Zelevinsky
which are emphasized in [G,PS] but, in contrast with their work, we will use
parabolic subgroups with non-abelian subgroups. For this reason, each descent
will be performed in two stages, except the final descent, as shown in the following
chart.

The chart could give readers a clear view of stages of the double coset calcu-
lations which will be done in Sections 7 and 8. The notations in this chart may
not be standard but will not cause any confusion. Please also refer to Section 3.

Pge—n
7 N\
JE! Jhe (Stage 1, in Section 7)
/ N
6; < (S4.T6,OL,1) (G4.T6,01,) < 6,
7 N
JK! JKe, (Stage 2, in Section 7)
7 N\
o1 < (P4, 0k,1) (G4,0k,0) « 0,
7 N\
Jet Jhe (Section 8)
v N
A1 o (82.T4,AL 1) (G2. Ty, ALo) & A
7 N
Jgxr o gl (Section 8)
v N
m < (P2, Ak 1) (G2, Ak ,0) < Mo
7 N
Jt J2 (Section 8)
Ve N
e (Pm Ql) (Goa Qo) =&

The reduction in each stage is established by the help of an essential lemma
which could be considered a version of the Mackey’s theorem for the local fields.
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This allows us to work in the Hom spaces on the set of double cosets instead of
the Hom spaces of the original subgroups.

The double cosets calculations show explicitly that there is at most one double
coset on which the Hom space is nontrivial. That is, the Hom space on the lower-
dimension subgroup will be carried to the next stage and so on. We then have
at the final stage the Whittaker model on GL(2,F) which proves our problem.

One immediate result of Theorem 1 is the local functional equation for the
p-adic field. Let us recall the definition of the integral Z(s,W, f,) in [B,G]:

Z(S, vVi fs) = H Zv(sv va fs.v)»

where
Zy(8, Wy, fs.0) =CF,(25)

a
a
—~1 s
X W, [ e z 1 5y .1(g,,)]
B2, ,\GL2vFX F2 —u 1
1
x |a|*~3.fo,0(95) dzdud* a dg,,
and
1
-1
-1 . Gy
v= 1 , i(gy) = 9 , gs € GL(2,F,).
-1 Gv

1
An identity from Theorem 1 in [B,G] showed that, for almost all places v € S,

Zy(8, Wy, fs,0) = Lo(s, 7y, spin).

PROPOSITION 10.2 (Meromorphic Continuation): Let F, be a non-archimedean
local field whose residue field is of cardinality q. Then the integral Z,(s, W, fs)
defines a rational function of variable ¢~*. Hence, particularly, Z,(s, W,,, fs )
has a meromorphic continuation to all s.

The proof is similar to a result of S. Gelbart and I. Piatetski-Shapiro in
[G,PS]. They use Bernstein’s theorem about analytic continuation of local in-
tegrals (proved in his letter [Be] to Piatetski-Shapiro in Fall 1985).
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To establish the local functional equation, we will need to prove another

property.

ProproSITION 10.4 (Non-vanishing property): For any non-archimedean local
place v, there exist a Whittaker function W] € Wx, and a function f2, €
indg;f'” dg, , such that Z,(s, W2, fo,) = 1.

The proof is rather simple. First, we choose the Whittaker function such
that the integral does not vanish, by matrix manipulation and using Schwartz

functions. Then the smooth function f2, € indg:‘

* 0g, , is a locally constant

function chosen properly.
We recall the definition of an intertwining operator which will be used in the
L5y, — indgy

proof of Proposition 10.3. Let M, ,: indg“ f" 6113?” be a normal-

ized intertwining operator defined as

(Masfo)lo) = F/ (v ) (M 7))

for all f, in V,,. This proves that V, ~V, _ (Jacquet-Langlands’ theorem).
This theorem and the above results are sufficient to establish the local

functional equation below.

PROPOSITION 10.3 (The local functional equation): Assume that F., is a non-
archimedean local field whose residue cardinality is q. Then there exists a

meromorphic function v,(s) such that, for almost all s,
Zu(s; Wv; fs,v) = 71)(5)-Zv(1 — 8, Wv, Ms,vfs,v)-

In fact, 7, (s) is a rational function of g~*.

In the second chapter, we will deal with archimedean places. Then we will be
able to determine the locations of the possible poles of the global spin L-function.
Indeed, we will need some necessary properties of the integral Z(s, W,, fs ) at
the archimedean places.

First, we will prove the following proposition.

PropPosITION 11.1 (Meromorphic continuation of Z,(s, W, f, ;) at archimedean
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places): The integral

a
a

Zo(5, W, for) = / //W( LY .y—l.i(/}))

B2 vav)\K Fx F2 —U 1
1

x |al*73.f, (k) dz dud*a dk
converges for sufficiently large R(s) and has a meromorphic continuation to all 5.

We refer to the work of H. Jacquet, J. Shalika and Piatetski-Shapiro in [J,PS,S],
[J,S.1]and [J,S.2], in order to estimate the Whittaker functions. Then the proof
of the meromorphic continuation part is reduced to a calculus task.

ProPOSITION 12.1 (Non-vanishing property at archimedean places): Let v be an
archimedean local place. For any s, fixed, there exist a Whittaker function W? €
Wi, and a K,-finite function f?,, € 1ndBLZ Y ‘SB, such that the meromorphic

continuation of the integral

a
a
Z,(s, W2, £2,) = / //W;[ . o 4 Lik)
(BZ,uﬂKv)\Kv F,),( F?; —Uu 1

1
x |a|*=%.£2.,(k) dz dud* a dk

does not vanish at s = s,.

The proof is the same as that of the non-archimedean case, except in the very
final step to choose the smooth function f,.

In the real place, we will use the Fourier expansion. In the complex case, we
will need the Peter-Wey! theorem about matrix coefficients.

All the information about the integral Z(s, W,, f;} at all places will help to
show the final result of this paper.

THEOREM 13.1: Let m be an irreducible, smooth and generic cuspidal represen-
tation of the symplectic groups GSp(6,F). The possible poles of the global spin
L-function Lg(s,n, spin) are only simple poles at s = 0 and s = 1.

In the proof of this theorem, we used results in Theorem 1 in [B,G]:
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THEOREM 1 (in [B,G]): The integral Z(s, W, f,) represents the spin L-function
in the sense that for almost all places v, the local integral

Zv(s, W, fs,v) = Lv(sy Ty, spin).

Moreover, it has meromorphic continuation to all s, with possible poles at s = 1
and 0, and functional equation

Z(57 W, fs) = Z(l - S,"V,M(S)f,).

Also following from [B,G], we can expect a relationship between the existence
of a pole of the L-function and the non-vanishing of a certain global period. That
is:

The existence of a pole at s = 1 of the global spin L-function Ls(s, 7,spin) is
equivalent to the non-vanishing of the integral

1 X1 Ty Ty T4
1 25 z6 27 +*
1 * % g
1 *x % 9
Za GL(2,F)\ GL(2,4) (A/F) 1 g
1

d:q ---dxy dg

for some ¢ € V.
Our Theorem 13.1 helped to confirm the above relationship.
A well-known conjecture states that Lg(s, 7, spin) will have a pole if and only
if = is a functorial lift from the exceptional group Gs.
(Please do not confuse with the convenient notation G which is introduced in
Section 3.)
CHAPTER I. THE LOCAL FUNCTIONAL EQUATION

1. The Theorem
Let F be a non-archimedean, local field.
Let GSp(6,F) = {g € GL(6,F) | 9.J5.97 = p(g).Js, for some scalar p(g) in F*},

J .
where Jg = J and J = ( 1 _1). Let R and U be two subgroups
J
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of GSp(6,F) which are defined as

I XY g
R={r€GSp(6,F)|r= I X g )} and
I ]
I X'Y b
U={u€GSp(6,F)Iu= I X) b ) },
I b

where g € GL(2, F);

I, X,X'Y € Mat(2,F) = {2 x 2 matrices whose entries are in F},

4 fi € GL(2,F)}.

For any fixed s, let us denote x, = dp, where g, is a modular character of
the Borel subgroup B, of GL(2, F).

We then define an induced representation of GL(2,F): p = indg:‘u’F)(Xo),
p: GL(2,F) — End(W,), where the induction is non-normalized. Here is the
main theorem of this chapter.

I is unit, and b € By =

THEOREM 1: Let m: GSp(6,F) — End(V;) be an irreducible, smooth and
generic cuspidal representation of GSp{6,F). Then, for almost all s in the com-
plex plane C, there exists at most one bilinear form, up to a constant multiple,
B: Vx x W, — C satisfying

I X'Y g
T ( I X) ( g ) v,p(g)w]z Po(trace(X)).B(v, w),
- g

(1.1) B

for all v € V; and w € W, where v, is some fixed non-trivial unitary additive
character of F.

We will give the proof of this theorem in Sections 2-9 of this chapter. This
theorem will help to establish the p-adic local functional equation in Section 10.

2. The setup

I X''Y g
Recalling the definitions of R and U, we have r = I X g
I g

I X''Y b
and u = I X b . Then let (X)) = 9, (trace(X)).
I b
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We can extend the representation p of GL(2,F) to the representation pgr by
the character v on X as: pr(r) = ¥(X).p(g).
The character \, of Bs is also extended to the character yy of U by

(1) = P(X).xo(b).

Then

(2.1) PR =Y. indg:’(Q‘F)(xo) = ind§(¥.vo) = indg(xU).

The left-hand side of equation (1.1) can be written as

(2.2) Blr(r)v, p(g)w] = Blr(r)v,v(X).p(g)(¥(X)w)],

because the character ¢, is unitary and so is the character .
Let pg be another representation of R which is extended from the representa-
tion p on GL(2.F) by the character ¥ as: pjg (r)} = ¥(X).p(g). We will have a

result which is similar to (2.1) above:
P = V. indg:'(z’m(\o) = ind§ (¥.x,).
Thus the right-hand side of (2.2) is

Blr(r)v. ¢(X).p(g)(¢(X).w)] = Bla(r)v, pr(r) (@ (X).w)]

(2.3)
= ¢(X).B[n(r)v, pp(r)w].

From (1.1),(2.2) and (2.3), we have
(2.4) Blr(r)o, pa(r)u] = B(v, w).
Let B be the space of all bilinear forms B. Then

B ~ Homg (7 © ind{(¥.xo), C)

~ Homy(ny @ (¥.%,).C)  (by the Frobenius reciprocity theorem)

~ Homy (7, ¥.xo) (where my is the restriction of 7 on the subgroup U

1

and the symbol “~ " means the contragredient)
~ Homy(7ry,¢.x5) (where . = 5{;2 and 5 =1 - s)

~ Homy {7y, ¥.xo)-
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(By exchanging s « &', we can replace x/, with x,.)

I X'Y by
Let U, = {Ul € GSp(6,F)| uy = I X by , by € le},
I by
where B,’ is the subgroup of By, consisting of matrices of the form b; = * I ) .

Let x = Resg , Xo» the restriction on U, of character x, of U. (We will use the
notation Res in this usual sense for the rest of this paper.)

We have U = Uy.Z, where Z is the center of U. The subgroup Z consists
of diagonal matrices of the form diag(z, z, z, 2,2, 2) in GSp(6,F) (i.e. z € FX).
Then

B ~ Homu, (ru,, (¢.x)) (because the two central characters maftch)

~ Homp,(7p,., indg‘; (¥.x))  (by the Frobenius reciprocity theorem)

where 7p, is the restriction of 7 on Pg which is a subgroup consisting of matrices

* * *
of the form GSp(4,F) * | in P12
1

The group P12 is the standard maximal parabolic subgroup of the symplectic
group GSp(6, F) whose Levi factor is isomorphic to GL(1, F) xGSp(4, F). These
subgroups will be described explicitly in the next section.

Thus the problem can be reduced to proving that:

(2.5) When 7 is an irreducible, smooth and generic representation of GSp(6, F),
the dimension of the space Homp, (nPs,indg‘i (1.x)) is at most 1.

Now, we will replace wp, simply by = for the rest of this chapter.

3. More notations

¢A. We use the notation (£, G, V;} to denote a smooth (algebraic) representa-
tion ¢ of a group G in the space Vg, & G — End(Ve). Then Alg(G)
represents the category whose objects are (¢, G, V) (or sometimes, just
simply &, or (€, V¢), if no confusion arises) and whose morphisms are usual
intertwining operators.

Let xr be a character of some abelian subgroup T of G. Then (¢, x7. G, V)
will denote a smooth {algebraic) representation £ of a group G in the space
Ve, &G — End(V) and €(t)v = yr(t)v for all v in V; and ¢ in T. Then the
corresponding category is denoted by Alg(G, xr) whose objects are (¢, x7, G, V¢)

and whose morphisms are usual intertwining operators.
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When the subgroup T has only the identity of G, we can ignore xr and simply
write the category as Alg(G) and the object as (¢, G, V).
oB. Let

GSp(4,F) = {g € GL(4,F)| g.Js.g" = p(g).Js for some scalar p(g) in F*},

an(y ) o, )

Let Sp(4, F) be its subgroup consisting of matrices of determinant 1.
Let G, = {diag(,,%,1,1,1) € GSp(6,F)}, and G3 and G4 be the trivial em-
beddings of the groups GL(2, F) and GSp(4, F) into the group Ge o GSp(6,F):

where

* 1

G; = GL(2,F) and S;= SL(2,F) ;
1 1
1 1

* 1
Gy = ( GSp(4,F) ) and S;= ( Sp(4,F) ) .
1 1

¢C. We will define the subgroups P,, of the standard maximal parabolic sub-
groups of G, n =0,2,4,6. Let

( 1 2y -2 13 —-24 Ts
1 T4
1 I3
Te = ¢ t| t= 1 2 ,
1 )
\ \ 1
4 (1
1L y1 —y2 w3
Ty={t|t= 1 . z’;’ ,
1
\ 1

T2=<tlt=
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All z;,y;,z are in F. Then Pg = G4.T¢; Py = G2.Ty4; P2 = G,. T3 is the
embedding of By’ into GSp(6,F):

*
x*
Py={plp= ¥ i and P,=1.
1
1
oD. Let L, be the center subgroups of T,,, where Ly = Ty,
1
1 Ys
1
Ly=<!!l= 1
1
1
and
1 s
1
1
L=<l 1= 1
1
1

Let Kg be the quotient subgroup Tg/Lg. Then

1 ]y —X9 T3 —X4 0

1 T4

ik - 1 r3
Kg = ¢ k| k = Lg.k, where k = 1 Py
1 Ty

1

Kg is equivalent to a four-dimensional abelian subgroup of T¢. We have Kg ~ F4.
Similarly, let K4 be the quotient subgroup T4/L4. Then

1
1y -y O
Ky=3 k| k=Lgk, where k = 1 vz
I n
1
1

K, is equivalent to a two-dimensional abelian subgroup of T,. We have K, ~ F2,
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4. The functors for the subgroup P

o A. We will construct the characters for Lg and Kg. Since they are isomorphic
to F and F*, respectively, we can recall lemma 5.4 in chapter III of [B,Z], with
reference to the notations introduced in the above section 3.D.
Let

1l 1 —-x9 X3 —I4 s

1 T4

1 T3

t= 1 s € Ts.
1 Xy
1

Then we have the identity: g.t.g~! = 9¢, for g € G4 and

Pu
D22 P23 P24 D25
P32 P33 P3¢ P35

9= Da2 P43 Da4a D45

Ps2 D53 Ps4 Pss
1

and
1 wy —wy W3 ~—UWq4 Ws
1 Wy
94 — 1 w3 ’

1 Wa
1 wy
1

where ws = p1;.¢5 and

(4.1)
Wy = P22Z4q + P23%3 + P24 + P25T1; W3 = P3aT4 + P33T3 + P34T2 + P35T1;
Wg = P42T4 + P43T3 + Pa4T2 + P45T1; W1 = P52%4 + Ps3x3 + P54T2 + Pss5T1.

LEMMA 4.1: Define O, 1(1) = ¥o(xs), and O, »() = 1, for alll in Lg. Then any
non-trivial character O, of Lg is conjugate to ©y, ; under the action of Ps.

Proof: Any non-trivial character Oy, of Lg is of the form Oy, (I) = ¥,(a.zs) for
some ¢ € F*. Let g € Pg as described above with p;; = a. Then (4.1) gives us

1 0 00 0 axs
1 0

glg l=9= 1

p—
—_ o OO
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Thus Oy, 1(91) = Yola.zs) = Or(l). |

Therefore, we will be interested only in the two characters ©r,, and ©y, ; in
arguments in parts B and C below. We have a similar lemma for Kg.

LEMMA 4.2: Define Ok 1(k) = Ok 1(k) = ¥o(z1), and O o(k) = Ok o(k) =1,
for all k in K¢. Then any non-trivial character of K¢ is conjugate to ©k ; under

the action of Pg.

Proof: Any non-trivial character Ok of Kg is of the form
Ok (k) = ¥o(a1.xy + as.xy + as.x3 + ag.x4) for a; € F.

Let g € Pg as described above with pse = a4, ps3 = a3, Ps4 = a9 and pss = a;.
Then (4.1) gives us

1 wq —wy wy —-wy O

gkg =k  wherek =

where wy = psoyg + Ps3x3 + PsaTe + pssxy. Therefore,

Ok 1(k1) = Yo(w1) = Yo(psas + PsaTa + PsaT2 + PssT1) = O (k). B

Thus, in part D below, we will consider only two characters Ok, and Ok 1.
oB. The normalizers of the two characters Oy ;, for i = 0, 1, are defined as

NOI‘I’ﬂp6 (Le, @L,i) d"—e‘f

{pePe|pLp™ € Lo, and Ors(plp™t) = Op.(1), foralll € L6}.
LEMMA 4.3:

(G4.T6) = NOI‘I‘IIP6 (L(;, @L,o) and (S4T6) = NOI‘IIlpG (LG, 91‘,1).

Proof: Lg is an abelian subgroup of Ts. To compute the action by conjugation
of (G4.T¢) = Pg on Lg, it suffices to consider only that action of G4 on Tg.
From the above definition and results in (4.1),

- For ©1, , = 1, trivially, its normalizer is the subgroup (G4.T¢) = Pg.
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— For Or,1(1) = ¥o(xs5), we need: 9¥,(ws) = ¥o(p1125) for all x5. Therefore,
p11 = 1is required. That is, the normalizer is the subgroup (S;.T¢). h

oC. The functors corresponding to the two characters Oy, ;, for ¢ = 0, 1.
We can define the Jacquet functors T as follows:

~J2% Alg(Pg) — Alg(G4.Te,0r,) and
~TY1. Alg(Pg) —» Alg(S4.Te, OL.1).
Let (m,Pg, Vz) be an object in Alg(Pg). Then, correspondingly,

~ (J%°(n), OL.0, (G4.K¢), Vis,0,) is an object in Alg(G4.Tg,OL,,) and
- (Jf’l(ﬂ),GLyl, (S4.Ts), V1,,0,) is an object in Alg(S4.Ts, OL,1), where

VLGyei = VW/V(L67 eL,i)

and
V(Le, O1,) = <7r(l)v — Oy, forallv € Vy,l € L6>.

We can also define the functors Ji"i:
~JE°: Alg(Ge.Te,OL,0) — Alg(Pe).

Let (6,,01,0,(G4.Te),V)) be an object in Alg(G4.Ts,0L,). Then
(Jf’”(ﬂo),Ps,V’) is an object in Alg(Ps), where we also have
TE°(0.)((g.8)-)v" = O o(D)-Bo(gt)’ = B,(g.t)0', for all (g.t) € (G4.Ts)
and I € Lg, and o/ € V). That is, Ji"" is just an embedding
Alg(G4.Te, O ) — Alg(Ps).

-JE: Alg(S4.Te, O1,1) — Alg(Ps).

Let (61,0L1,(S4+.Ts),V{) be an object in Alg(S4.Te,Or,1). Then

(Jy'(61),Pe, V') is an object in Alg(Pe), where J1'(61) = ind(g, 1, (61)

is an unnormalized compact induction; and (61, O 1, (S4.Ts), V1) satisfies:

01((s.8).0)v" = Or,1(1).61(s.t)v', for all o' € V{, (s.t) € (84.T) and [ € Ls.
oD. We have the same results for the normalizers of two characters Ok ;.

Normg,.1,)(Ke, Ok, i) =

{p € (G4-T6)l p.E.pgl € Kg, and @K‘i(p.];'.pyl) = GK,,‘(E), for all k € Ke}

= (M;.Tg), where

M; = {g € G| g.k.g7! € K, and Ok ;(g-k.g7") = Ok ;(k), forall k € K6}.



Vol. 101, 1997 THE SPIN L-FUNCTION 17
LEMMA 4.4:
(G4.Ts) = Norm(g, 1,)(Ke,Ox,0) and (P4.Ts) = Normg,.T,)(Ks, Ok.1)-

We now define the functors corresponding to the two characters ©k ;, for
i=0,1, acting on Alg(G4.T¢,OL,0).

We ignore the functors acting on Alg(S4.Tg,O1,1) for certain reasons which
will be seen later. (Also refer to the chart in Section 0. Introduction.)

We can define the Jacquet functors TE as follows:

~JXe: Alg(G4.Ts,O1,) — Alg(G,) and
~T5: Alg(G4.Ts, O ,) — Alg(Py).

Let (0,0L,0,(G4.Ts),Vp) be an object in Alg(G4.Ts,O,)- Then,
correspondingly,
~ (J%°(0), G4, Vi, 0,) is an object in Alg(G4) and
- (J%Y(0),P4, Vk,0,) is an object in Alg(P,), where Vk,o, =
Va/V(Ke, Ox i) and

V(Ke, Ok i) = <0(1})v — Ok, forallve Vy and k € K6>.

Let us denote Alg(G4.Ks) to be a sub-category of Alg(G4.Ts, Oy ,), consisting
of representations which act trivially (by ©p,) on Lg. That is, we identify
(8,010, (G4.Tg), V) with (6, (G4.Ke), Va).

We can also define the functors Jf’i:

~T$% Alg(Gy) — Alg(G4.Ke).

Let (0,,G4,V)) be an object in Alg(G4). Then (jf’o(ao), (G4.Kg), V') is an
object in Alg(G4.Ks).

~JE Alg(Py) — Alg(G4.Ko).

Let (01, P4, V{) be an object in Alg(P4). Then (71! (01), (G4.Kg), V') is an
object in Alg(G4.Kg), where Jf o) = 1ndgﬁ‘§?) (0}) is an unnormalized com-
pact induction and (o}, (M;.Ke),V/) € Alg(M;.Kg) is defined by o}(m.k)v' =
Ok i(k).oi(m)v', for all v' € V!, m € M;, k € Kg, where we denote M, = G4
and M; = P4. (Obviously, the induction inside the functor Jf"’ is identity.)
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5. The proposition
Following [B,Z], we state some properties of the functors Jf‘i, J L’i, 1=0,1.

PRoOPOSITION I: For any representation m € Alg(Pg), 6; € Alg(S4.Te,O1,1),
and 0, € Alg(G4.T6,01,) and ¢ = 0,1, we have:

(1) All the functors J. L J_f_"i are exact.

2) JH T84 0:) ~ 0; and T TN 8:) ~ 0 if i £

(3) ]_{"1 is left-adjoint to JYY. that is, there is an isomorphism

(5.1) Homp, (J 1" (61), 7) = Homyg, 1) (61, T2 (7))

which depends functorially on 7 and 6;.
TE° s right-adjoint to J_{"O; that is, there is an isomorphism

(5.2) Homp, (1, J°(8,)) = Hom(g, o) (T°(7), 60)
which depends functorially on  and 6,.
(4) Let us consider the homomorphisms:
b — T T2 (n); € TH°TE(80) — 6o,
by: JEATEN ) — m €8 — TELTEN0).
Then ¢!, and ¢} are isomorphisms, and £, and {; form a short exact sequence:
(5.3) 0 — JELTMY (7)) L 1 L gPo g o(m) — 0.
(5) JY* and j_{"i establish a bijection between 0; and j_{‘”i(ﬁi). In particular,
0; and Jf‘i(ﬁi) are irreducible simultaneously.

The proof of Proposition I will be given in Section 9.
We have the same proposition for the functors JX and Jf".

6. Setting up the double coset calculation

We reduced our work to investigating only the space Homp, (7, ind{,‘j (ﬂ)‘-X)) (by
2.5.) From Proposition I, part 1 proves that all the functors Jf’l,\ﬁ"z, where
i = 0,1, are exact. Therefore, it together with the short exact sequence in part

4 will give us this short exact sequence:

0 — Homp, (‘7_,1_"0.75”0(77),ind{}sL (¢.x)) — Homp, (7, indg‘i (2.x) >
— Homp, (772" (), ind(s; (¥-x)).
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Eventually, we will prove that the space Hompﬁ(jf’ljf'l(ﬂ),indg‘i (1.x)) is
trivial and Homp, (Ji"oj Loy, indg‘j (¥.x)) is at most one-dimensional.
For i = 0,1, let §; = J="(r). Then we will consider only the following spaces:

Homp, (7, J%" (r), indf¥ (.x)) = Homp, (J4(6;), ind§? (¥.x)).

In fact, we will investigate the space Hompﬁ(Jf’i(Oi),indg‘i (1.x)) in the
following lemma for any representations 6;, where 6; € Alg(S4.T¢,0r,1) and
0, € Alg(G4. T, 01, ,) and J1"*(6;) was defined in Section 4.C.

We need the following lemma, which will play a basic role in double coset

calculation in the next sections.

LEMMA 6.1: Let X be a locally compact, totally disconnected group, and Hy, Hs
be its closed subgroups. Let (01,H1,Vs,) be a representation of Hy and x
be a character of Hy. Let the group H = H; x Hy act on the group X by:
T hg.’l)hl_l. Assume this action is constructible.! For z € X, let y, = HoxHy
be a double coset representative in Y = Ho\X/H;. Let x5(h) = xa(zhz™1), for
allh € *H = H, Nz 'Hyx. If the space Hom yy(a1, x5) = 0 for all orbits y,
but only one orbit y,, = Hox,H,, then

(6.1) Homx (o, X3 ) = Hom=o iy (01, X3°),

where the inductions are compact and not normalized.

! Remark: In fact, by the Appendix in {B,Z], p. 62, one can prove this assump-

tion holds in applications in this chapter.

Proof: We recall that Y = Ho\X/H,. Then Y is generally not Hausdorff. We
define the projection by double coset, P: X — Y, by 2 > y, = HoxH;. It isa
continuous mapping.

Let us recall the action of group H = (H; x Hy) on group X by z — hyzhT'.
Then the orbit of € X is just the double coset Hox H,. Its stablizer is calculated
simply, stab(z) = H; Nz 'Haz, and now denoted as *H which is embedded
into the group H = (Hy x Ha) by h — (h,zhz™!) for any h € *H. Then
(Hy x Ho)/*H ~ HoxH;.

We now consider two representations on “H which are the restrictions of the
representation o and of the conjugated character x5, which is defined by

x5(h) = x2(xhz™"), forallh€®H.
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Let us define a representation (o, H,V,) on the group H = (H; x Hy). Let
Vo = Homg(Vy,,Vy, ). For T €V, v €V, let

o(hy, ho)T(v) = xa(hg)™! T(o1(h1)v).
On the subgroup *H,
o(h1, zhiz™!)T(v) = x2(zh1z7 1) LT (01 (h1)v) = X5 (h1) " .T(o1(h1)v),
for all hy € *H. Thus
o(hy,zhiz )T (v) = T(v) is equivalent to  T(o1(h1)v) = x5(h1)T(v).
Thus we have a natural isomorphism:
(6.2) Hom(mH)(lV(,1 ,0) =~ Hom= gy (01, X3 )-

o We now consider another representation of H, (¢*, H,C°(X, V,, ), defined
by
o*(h)f(z) = 0*(h1, ha) f () = x2(h3 *).o1(h1) (@),

for any £ € X, h = (hy, hg) € H and for any f € C*(X,V,,), f is a com-
pactly supported smooth function: X — V,,,. Then the representation ¢*
inherits the same property (6.2); that is, there exists a natural isomorphism

(6.3) Hom(zﬁ) (lv‘71 ,0%) ~ Hom(= H) (o1, Xx3)-

We also define the action of representation o* on Home(C° (X, Vs, ), Vy,)
Hom¢(C2(X,V,,),C) as o*: H — End(Homc(CXP(X, Vs,), Vy,))-
For any A € Homg(CP(X, V5, ), Vy,), f € CP(X,Vy,) and h € H,

(6-4) (@*(R)A)(f) = A(e™(R)(£))-

The right translations p and A act on the induced spaces ¥ and x, respectively,
in the usual way. Let us define the translation action of the group H = (Hy x Hj)
on the space a{t by

(6.5) k(h)f = K(h1, ho)f = A(ha)p(h1)f,  for all f € of.
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Let & act on the space Hom¢(C°(X,V;,), Vy,) by
(6.6) (k(R)A)(f) = A(k(h)f), forany A, fand h € H.

Let D(X) be the subspace of all distributions A in space Home(C°(X, V;,), V4, )
which satisfy

6.7  k(h)A=0*(h)A, forall AeD(X), h=(hy,ho)e H.

¢ Let us define the sheaf F on the group X. For any open set U € X, we
have F(U) = C*(U,V,,). Let F. be the corresponding sheaf comprising a
module of compactly supported sections: for any open set U € X, we have
F(U) =C®U,Vs,).

Now let Z = P~Y(y,) = HezH;. Then Z is a (closed) double coset in X,
which is stable under the action of H = (H; x Hj). Let Fz be the restriction
of the sheaf F on Z, which is defined as: Fz(U,V,,) = F(U,V,,) for any open
subset U in Z. Then F7 is also a sheaf and the fiber Fz , ~ F,, for any z € Z.
The etale space of Fz is just the restriction of the etale space of F to Z.

Now, we also define (Fz). as the restriction of F, on the subgroup Z.

Let F.(o*) be a submodule of F. generated by elements of the form
k(h)f —o*(h)f, for f € F. and h € H = (H, x Hy). Then M = F./F.(o*) is a
C (Y, V,,)-module.

Similarly, we define (Fz).(c*) to be a submodule of (Fz). generated by
elements of the form k(h)f — o*(R)f, for f € (Fz)..

The proposition I-9 in [E,H] shows that it is only necessary to specify a sheaf
on a base of the topology of the space. Let

B, = {P(H,K H,), where K C X is both compact and open}

be a base of the topology of space Y. Then G, the corresponding sheaf on Y,
associated with M and base B,, is defined as follows:

For any subset U € B,, let G(U) = 1y.M. For U,V € B, and V C U, the
restriction map pyv: G(U) — G(V) is defined by pyv(m) = ly.m, for any
m € M. Then G is proven to be a presheaf which satisfies the sheaf axiom.
Hence it is a sheaf.

Now the condition in theorem 2.36 of Bernstein and Zelevinsky, in [B,Z], that Y’
is a Hausdorff space, can be waived and its constructibility property is sufficient
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instead, for our purpose (by the same arguments used to prove theorem 6.9, loc.
cit.). Then the theorem shows that:
(6.8) For any y, € Y, the stalk G, is isomorphic to (Fz)c/(Fz)c(0*), where we
recall Z = P~(y,) = Hox H;.
e For any A € Homg(G,,,V,) ~ Homc((Fz)c/(Fz)e(0%),Vy,), it is a
distribution on the subgroup Z, which satisfies A(k(h)f — o*(h)f) = 0,
for any f € (¥z). and h € H. Therefore, by (6.4) and (6.6),

(k(R)A)(f) = (" (R)A)(f) =0 or  K(h)A=0"(R)A.

Now we need the following lemma.

LEMMA 6.2: Let (o, H,V,,) be any representation of the group H and H, be its
closed subgroup. Let A be a distribution of H/H,, satisfying

(6.9) k(h)A =a(h)A, forallhin H.

If A # 0, then A € Hom=g)(Ly, ,0).

Proof: A is a distribution on H/H,, hence it is invariant under action of H,.
By (6.9), for any f € C*(H,V,,) and h € H,, we can write

a(MA(f) = s(R)A(f) = K(DA(f) = A(f).

By the condition A # 0, we can choose some f, such that A(f) # 0. That gives
us A € HOm(xH)(lvvl,O'). [ |

Let H = (H; x Hy), H, = “H and o is ¢* in the above lemma. (Thus
ys ~ H/H,.) Then for any A # 0 in the space Homg¢(Gy, , Vy,), we proved that
A is also in the space Hom=)(1v,, ,0). Recalling the result (6.3), we have

Homy)(1v, ,0") = Hom= gy (03, X3)-
Thus we have the following embedding:
(6.10) Homc(Gy, , Vy,) — Hom= (01, X3)-

e On the other side, for any A € Hom¢(G(Y),Vy,) = Home(Fe/Fe(o*), Vyu)s
it is a linear functional on the space of compactly supported global sections of G,
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or, in other words, a distribution on X, which satisfies A(k(h)f — o*(h)f) =0,
for any f € F. and h € H. That is, k(h)A = 6*(h)A. Thus

D(X) ~ Home(G(Y), V,,).

Now we try to embed Homy (o5, x&) into P(X). From Frobenius’ reciprocity
theorem,
Homy (07, x¥) ~ Homy, (07, x2).

Given any homomorphism ¢ € Homg, (05X, x2), we will construct a distribution
A on X as follows:

Let TI be a projection, II: C°(X,V,,) — o5f. For all f € CZ(X,V,,), we
can define (IIf)(z) = le o1(h) "1 f(hx) dh. Then, for any hy € Hy,

(1) (hz) = /m(h)“lf(hhxw)dh: /01(h1)01(hh1)"1f(hh1w)d(hfh),

H] Hl

(6-11) = Ul(hl)/m ()71 f(R'z) d(R') = o1(h1)(TLf) ().

H,;

Thus (IIf) € 0. Hence we can define A(f) = ¢(Ilf) € V,,. Then we
can check that A satisfies the condition (6.7) to be in D(X). Thus we have an
embedding:

(6.12) Homy (075, %) — D(X) =~ Home(G(Y), Vi)

e Now we suppose that all spaces Homc(G,,,V,,) ~ Hompy(o1,x5) = 0
for all orbits y, but only one orbit y, . We consider two cases:
— When the orbit y,, is open, we have a short exact sequence of distributions:

00— HomC(g(Y ~ yra)? sz) —_ HOIIl(c(g(Y), sz)
N HOmC(gyz,, > VX2) — 0.
In theorem 6.9 of Bernstein and Zelevinsky, in [B,Z], the condition that
Y is a Hausdorff space was waived and replaced by its constructibility
property, which is sufficient for our argument. Then it shows that the

space Homg(G(Y ¥z, ), Vy,) =~ 0 since all spaces Home(G,, , Vs, ) ~ 0 for
all orbits y, in Y other than the only open orbit y,., . Therefore,

(6.13) Homc(G(Y), Vy,) = Home(Gy, , Vy,)-
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~ When the orbit y,, is not open, we will consider its closure y.. We have

the following short exact sequence:
0 — Homc(G(yc), Vy,) — Home(G(Y), Vy,)
- Hom‘c(g(y A yC)’ sz) — 0.

By the same argument as above, Home¢(G(Y ™ y.), V3,) =~ 0, because the
spaces Home (G, , Vy,) =~ 0 for all orbits y, in ¥\ y.. Therefore,

(6'14) Homc(g(yc), sz) = Homc(g(Y), VXz)'

The only surviving orbit y,, is open in its closure y.. Then we can apply
the above case for an open orbit:

(6.15) Homg(Gy, sz) ~ Homc(G(yc), Vi) =~ Home(G(Y), V,,).
Therefore, from the results in (6.10, 6.12) and (6.13, 6.15), we have
Homyx (of(, X?) — Hom=. g1 (01,x5°)

This completes the proof of Lemma 6.1. |
We apply this lemma to the double coset calculation mentioned above.

LEMMA 6.3: Fori = 0,1, let us define PD; = (N;.T¢) N (p~1.U}.p), where p €
U1 \Ps/(N:.Ts), No = G4 and Ny = S4. Define (¢.x)?(d) = (¢.x)(pn-d-p; ),
for all d in PD;. Assume that the space Hom»p,)(6:, (¥.x)?) = 0 for all orbits
U;.p.(N;.Tg) but only one U;.p,.(N;.Tg). Then for all representations 8;, where
61 € Alg(S4.T6,01,1), and 6, € Alg(G4.T6,0OL,0),

(6.16) Homp, (7" (6:), indg? (¥.x)) < Homgap,) (6:, (.x)%°).

Proof: Same as that of Lemma 6.1, in which X = Pg, H; = (N,;.T¢), Hy = Uy,
o1 = 8; and x3 = (¢.x). (These groups satisfy conditions in Lemma 6.1.) ]

In the next section, we will calculate each Hom»p,) space corresponding to
each double coset p in U;\Pg/(N;.Ts).

We intend to show that the assumption in the above lemma could be satisfied:
for each i, all spaces Hom(»p, (6, (¥.X)P) will be trivial, possibly except only one
space Homs.p,)(8;, (1.x)P°) corresponding to the orbit p,. (Refer to the chart
in Section 0. Introduction.)
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7. The double coset calculations for the subgroup P

e A. STAGE 1. ¢ a. ¢ = 1. The double cosets for this case are in
U;\P6/(S4.Ts).

We have U;.(S4.Tg) = Pg, hence there is only one double coset whose repre-
sentative is p=1. (Its orbit is open.) Let 6; = J_I_"l(ﬂ'). Then, from Lemma 6.3,

we have

Homp, (J5' T (), ind¥s (¥.x)) ~ Homp, (T4 (61), indp? (¥.x))
3 HOl’IlDl (91, (IpX)p) = HOIIIDl (017 (¢¥))

Then f(61(d)v) = (¥-x)(d)f(v), for all f € Homp, (81, (¥.x)), d € Dy and
v € V. Let

10000.’!35

1 0

1 0

d= 1 0
1 0

1

in Lg. Then d € U; N (84.Tg) = PD; = Dy
= 01(d) = OL,1(d) = ¥o(s), and -
~wn@=v(g o) x(" ) =w0-1
Then we can choose x5 in d, such that (¥.x)(d) = 1 # 61(d).
Therefore, the identity f(6;(d)v) = O 1(d)f(v) = (¥.x)(d)f(v) forces f(v) =
0 for all v € Vj,. That is, f = 0. Thus

(7.1) Homp, (J1"' 7% (1), ind§? (.x)) — Homp, (61, (¥.x)) ~ 0.

o b. 4 =0. The double cosets for this case are in U;\Pg/(G4.Ts). We have
(G4.Tg) = Py, hence there is only one double coset whose representative is p=1.
(Its orbit is open.) Let 8, = J°(r). Then, from Lemma 6.3,

Home, (3" J=*(r), indg, (¥.x)) = Homp, (J5"°(6), indg, (¥.x))
(7.2) ~ Homp, (85, (¥.x)?) = Homp, (0., (¥.x)).

For all f € Homy, (6, (¥.x)), f(0.(d)v) = (¥.x)(d)f(v), for all d € D, and
v € Vy,. We have D, = U; N (G4.T¢) = Uy. Then the most general form of d
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in Uy is
T A
1 % % % %
d= b 1 x
1 x =%
b =

x
1

In general, we cannot compare (¢.x)(d) and 6,(d), or, in other words, we cannot
claim anything about f(v). Thus the space Homy, (6,, (¥.x)) in (7.2) may not
be trivial. We will prove this next.

o c. We recall now the short exact sequence at the beginning of Section 6:

0 — Homp, (]}_""J_L’"(ﬂ), indg‘i (¥.x)) — Homp, (7, indg‘*l (¥.x))
~ Homp, (7" 72 (), indg (¥.x))-

By this sequence, (7.1) and (7.2),

Homp, (r, indfy® (.x)) =~ Homp, (7,°J%(n), indg® (¥.x))
(7.3) « Homy, (6, (X)) (where 8, = J=°(r))
=~ Homg, q) (8o, ind{* T (v.x))
(by the Frobenius reciprocity theorem)
(7.4) =~ Homg, 14)(OL,0-T=°(7), ind{5* T (3.x)).
The next step is to repeat the work on functors and double coset calculations
for the subgroup (G4.Ts).

¢ B. STAGE 2. By (7.4), we reduced our work to investigating only the space

Hom(G.;.Ts)(eL,o-jf’o(ﬂ'),illdg;"'TG)(I/).X)).

1

From Proposition I, part 1 proves that all the functors J% and J_,I_(’i (where
i = 0,1) are exact. Therefore, it together with the short exact sequence in part

4 will give us this short exact sequence:

0 — Homg, 14)(OL,0-T 1 TE(6,), ind (5T (v.x))
— Hom(g, 1) (6L o-00, ind{* ™) (.x))
— Hom(g, 14)(OL 0-JE TXNG,), ind (T (y.x)).
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Eventually, we will prove that Hom(G4_T6)(@Lio.jf’oji("’(ﬂo), indgi“"re)(w.x))
is trivial and the space Hom(G‘l,Ts)(@L,oJf’l 5’1(00),ind$"T6)(1/).x)) is at
most one-dimensional. For 1 = 0,1, let 0; = Ji{’i(ﬂo) = Jf(’i(.f""(n)). Then

we will consider only the following spaces:

Homa, 16)(Or,0-T 1 TX (8,), ind{§+ T (9.x))
~ Hom(g, 7,)(OL 0.5 (03), ind {5+ T (1.x)).

In fact, in the following lemma, we would investigate the space
Hom(g, 7¢) (Oro-74 (01), ind(5;* ™ (¥.)),

for any representations o; € Alg(M;) and Jf’i(oi), which was defined in Section
4.D. We have a lemma which is similar to Lemma 6.3 (same proof).

LEMMA 7.1: Fori = 0,1, let us define PD; = (M;.T¢) N (p~1.U,.p), where p €
U1\(G4.T6)/(M;.T6), M, = G4 and My = Py. Let (¥.x)P(d) = (¢.x)(p.d-p™1),
for all d in PD;. Assume that the space Homp,)(Oy,..0}, (1.x)?) = 0 for all
orbits U,.p.(M;.Tg) but only one U;.p,.(M;.Tg). Then for all representations
g; in Alg(Mz),

(7.5)

K,i . 1(G4.Ts) ! Po
Hom(g,.14)(OL,0-J4 *(0:), indy; (¥.x)) = Homrop,)(OL,0.0%, (¥-X)P°).

Using this lemma in the next step, we will calculate each Hom»p,) space
corresponding to each double coset p in U;\(G4.Te)/(M;. Ts).

We intend to show that the assumption in the above lemma could be satis-
fied: for each case i, all spaces Hompp,) (O .07, (1.X)P) will be trivial, possibly
except only one space Homp.p,)(OL,0.07, (¥.Xx)P°) which corresponds to the
orbit p,.

o a. 1=0. The double cosets for this case are in U;\(G4.T¢)/(G4.Ts); hence
there is only one double coset whose representative is p=1. (Its orbit is open.)
Let 0o = J¥°(6,). Then, from Lemma 7.1, we have

Hom(G4.Ts)(9L,o-Jf’°.7_r_(’°(0,,),indgg"Ts)(zp.x))
< Homp, (81,005, (¥-X)?) = Homp, (81,000, (¥.X))-
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For all f € Homp, (O ,..0), (10.x)), we have f(Or ,.00(d)v) = (v.x))f(v) for all
d€ D, and v € Vg, , 5. Let

1 0 ~z9 23 —z4 O

1 T4

_ 1 0 I3
d= 1 I
1 0

1

Then d € U; N (G4.Te) = D,. In fact d € Kg. Let I be the 6 x 6 identity
matrix. Then

- OL,.00(d) = Ok o(d).0(Ig) = 1, and

- wn@=v (g 2)x (" })=valan)
Then we can choose x5 in d, such that Oy, ,.0L(d) = 1 # ¥o(z2) = (¥.x)(d).

Therefore, the identity f(OL ,.0,(d)v) = f(v) = Yo(z2).f(v) = (¥.x)(d)f(v)

forces f(v) =0 for all v € Vg, , o:. That is, f = 0. Thus
(7.6)
Hom(G4.T6)(@L,oJf’o.ﬁ(’o(ﬁo),ind&,ﬁ"n)(?ﬁ-x)) — Homp, (OL,0.00, (¥.X)) ~ 0.

o b. i = 1. The double cosets p for this case are in Uy\(G4.Tg)/(P4.Ts),
which is simply equivalent to U;\Pg/(P4.Ts). We now consider the latter double
cosets.

Let us define a subgroup B; of the Borel subgroup of GSp(6, F): B; consists
of matrices of the form

X ok ok ok kX
X ok x k%
x k% X
X kX

x %

1

Decomposing Pg, we have
Pg = U Ui (7"7)(P4.Ts).
YEB1\Pg/(P41.T6);y' €U1\By/[Bin(7(Ps-T4)y™")]
We can observe B;\Pg/(P4.Tg) ~ B{\GSp(4, F)/P/, where the Borel subgroup
B/ consists of matrices of the form

*
*
¥ X X X
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and the parabolic subgroup P, consists of matrices of the form

x ok K %
* k%

* %k %k

1

of the group GSp(4, F).

By the well-known Bruhat decomposition, we now can identify the Weyl group
W of GSp(4, F) with B{\GSp(4, F)/B]. It is generated by two permutations of
a7y, 9, and by four transformations of the form a; — alil and ag — a:QU
o1, (vg are non-zero complex numbers. Therefore, the order of the Weyl group W

, where

is eight.

Recalling the generalized Bruhat decomposition (cf. chapter 1.2 in [Hol), we
have B{\GSp(4,F)/P, ~ Wp\W/Wp, where Wg = W N B} has only the
identity and Wp = W N P/ is a subgroup consisting of the identity and

-1

1

Thus there are four double cosets in B}\GSp(4,F)/P}. Hence we have four
double cosets in B1\Pg/(P4.T¢) whose representatives are

1 1

I

Yo = 1 » N 1 y

1 1

Y2 1 and 73 = .

1 1
For j = 0,1,2,3, we will consider all 4"’s associated with each +; and recall that
p will have the form p = (y'.7;). Let oy = 1(’1(90).
Hom(G4.T5)(@L,o-Jf’ljf(’l(Oo),ind%ﬁ"Tﬁ)(w.x))
(7.7) ~ Homg, 1) (OL.0- T4 (1), ind T (v.x)).
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Then by Lemma 7.1, we will consider the spaces Homp,)(OL,0.01, (¥-%)P)
for all p’s of the form p = (y'.y;), where j = 0,1,2,3. For all f €
Hom(»p,)(OL,0.01, (¥.X)?), v € Vo, ,.o; and d € PD;, we have

(7.8) f(OL,o.01(d)v) = (¥.x)P(d).f (v).
We now consider four different cases below:

ea j=0 7=17=1 Theny € U\By/[Bi N (7%(Ps.Te)v, )] =
Ul\Bl/[Bl N (P4T6)] Since By C (P4.Ts), hence B; N (P4.T6) = B;. That
is, ¥ = 1 only; and p = (v'.7,) =7, = 1. Let

1 0 —xz9 3 —2x4 0O

1 T4

. 1 0 3
d= 1 T9
1 0

1

Then d € U; N (P4.Tg) = " Dy; in fact, d is in Ke.
~ Br,.01(d) = Ok 1(d).01(Is) = ¥(0) = 1, and

- war@=w0@=v (5 2)x(" ) =vete

Then we can choose 3 in d, such that Oy, ,.07(d) = 1 # ¥.(z2) = (¥.x)(d).
For all f € Hom+,p,)(OL,0.01, (¥.X)), the identity

f(Or,0.01(d)v) = f(v) = Yo(x2) f(v) = (¥ x)(d) f(v)

forces f(v) = 0 for all v € Vg, , 1. That is, f = 0. Thus the space

(7.9) HOIII(-y,,DI)(eL,o.JII, (¢X)) ~ 0.
1
1
. 1
eb.j=1L y=m= 1
-1
1
To consider 7' € U;\B1/[B1 N (71(P4.Te)yi )], we observe that
* % k% x
* X *
1

Y: ¥ B, 0[P Tyl = € GSp(6, F)

»*
*
Lol I R S B
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Since (U;.Y;) = By, we have only one v/ = 1 and hence p = (¥'.71) = 71. Let

1 0 —z9 23 —x4 O
1 T4

1 0 xs3

1

a,
I

Z2
1 0
1

Then
1 23 0 z4 —z9 O

1 X9
1 Ty

1 0

1 XT3

1

d =

will satisfy the identity d.y; = v1.d/, and d’ € (77 1.U1.m) N (P4.Tg) = M Dy; in
fact, both d and d' are in Kg. We have:

- O,0.01(d") = Ok 1(d').01(I6) = ¥o(z3), and
- 0@ = @) =@ =v (g 2)x(* D)
= wo(x2)~

Then we can choose z3 and 3 in d such that Oy, ,.01(d") = ¥o(x3) # Volx2) =
(¥.x)"(d'). For all f € Hom(xp,)(OL,0.01, (¥.x)7*), the identity

F(BL,0.01(d")v) = ¥o(3).f (v) = Yo(a2)-f(v) = (¥.Xx)"(d) f(v)
forces f(v) = 0 for all v € Vi, , »¢. That is, f = 0. Thus the space
(7.10) Hom(n D,)(GL,o.a’l, (’(,[).X)'Yl) ~ 0.

1
°C.j=2. Y=m= )

1
We have a similar result:

(7.11) Hom(nnl)(eL,o.a;, (1/).)()72) ~ 0.
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1
Let us consider 4/ € U;\B;/[B; N (13(P4.T6)v3 *)], which is a set of diagonal

matrices of the form: diag(z, 2,1, z,1,1), for all z € F*. Therefore,

z

(7.12) p=(3) = , forall z € F*,
-1
1

Suppose d' € (P4.Tg). To satisfy the condition d = p.d’.p~' € Uj, the most
general form of d’ is

a Yy Z.x3 &4
’ a r3
(7.13) d = b1, .
1 Iy
1
(Then d' € *Dy.)
a
a y 2.T3
- Op o.01{d) = Ps(m).00 Z 1y , and
1
1
_ Pl = A SN — y' —xy a4 —ZX3
@) = o) = @ =v (4 T2 )x(* )

T3

= Yoy +2.71).X (a 1 ) = Yoy’ +2.z1).Ja|".

Recalling that, for all f € Hompp,)(OL 0.0, (¥-X)P), d €PD1and v € Vg, , .01,
we have the identity

(7.8) f(Or,o.01(d)v) = (Y.x)*(d) f(v).
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For each 2 # 1 fixed, we have two cases:
- Ifo(2) # ¥o(1),leta=1,23=0,y=9y =0,b=0and z; = 1 in d’. Then
OL,0.01(d") = ¥o(1) # Yo(2) = (¥.x)P(d).

Therefore, (7.8) gives 1,(1).f(v) = ¥o(2).f(v). This identity forces f(v) =
0forallve Vg, , .- Thatis, f=0.

= If Po(2) = Yo(l), let z3 =0,y =y =0,b=0and z; =0 in d’. Let I, be
a diagonal matrix of the form (a,a,a,1,1,1). Then

OL,o.01(d)=01(I,) and (¥.x)?(d')=|ae|*, for almost all s.
Then, (7.8) is rewritten as

f(o1(Ia)v) = |af*.f(v).

This equation has solutions for at most a finite number of s in the complex
plane. That is, f = 0, for almost all s. Thus, for all matrices p described
in (7.12) above (where z # 1) and for almost all s,

(7.14) Hom(rp,)(OL,0.01, (¢.X)F) ~ 0.

Finally, we consider only one case when z = 1 (hence p = 73). Generally, we
cannot compare O, ,.0}(d) and (¢.x)"3(d) for d € "*D;. In other words, the
space Hom(+ p,)(OL,0.01, (¥.X)") may not be trivial, for any representation o,
in Alg(P,).

Now, we will collect results in (7.7) and (7.9), (7.10), (7.11) and (7.14). By
Lemma 7.1 we can conclude, for almost all s,

(7.15)
Hom(G4.T5)(9L,o-Jf’IJE{‘I(90),ind&ﬁd'Tﬁ)(Tl’-X)) — Hom:p,)(OL 0.0, (¥-x))-

o C. We recall now the short exact sequence preceding Lemma, 7.1:
0 — Homg, 1,)(Or,0- T TX°(8,), ind{T+ T (.x))
— Homg, 16)(OL,0-00, ind(s * T (¥.x))
— Hom(G4,T6)(9L,O.J+ K, 1(0,,), ind&ﬁ"Ts)(d).x)).
From this sequence, (7.6) and (7.15), we have
Hom((;A.Ts.) (GL,O.BO, indgi"’rs)(’(,b.x))
s Hom(G, 114)(OL,0. T4 TE 1 (8,), ind 54T (.x)).



34 SAN CAO VO Isr. J. Math.

For any two spaces A and B, by the notation: A dism B, we mean the dimension of
A is not greater than that of B: dim(A) < dim(B). Then, from (7.4) and (7.15),

Homp, (7, ind{ (¥.X))
(7.4) = Homg, 1,)(OL,0.J2(n), ind ™ (9.x))
i Hom(g, 1) (O 0. TE*TE(6), ind (5} ™ (4.))
(by the above sequence and (7.6))
(7.16) = Homxsp,)(OL,0.07, (¥.x)")  (by (7.15)) for almost all 5.

In the next stage, we will prove that Homsp,)(OL,0.01, (¥.x)"*) may not be
trivial.
Let H; = D, = (P4.T6)ﬂ(73'1.U1.73). Let 7 = (¢.x)*. Thatis, 7(h1)=
(’lfLX)(’Yg.hl.’)’g_l) for all h; € H;. Recall Jf"”(w) =6, JF’I(OO) = ¢g1. Then
Homp, (7, ind{'i,“1 (¥-x)
(7.17) dism Hom(mnl)(OL,o.a’l, (’(/).X)%)
~ Hom(p4,T6)(6L,o.a§, iIldg,;'TS) 7')
(by the Frobenius reciprocity theorem)
~ Homp, 14)(OL.0-Ox,1.75 " T5 (), indig* ™) 1),
(7.18) for almost all s.
Then the next step is to repeat the work on functors and double coset calcu-
lations for the subgroup (P4.Ts), in which the subgroup H; will play the role of
U, in the previous sections (particularly, in Lemmas 6.3 and 7.1). Explicitly,

H, =(73_1.U1.’)’3) N (P4.T6)

!
a T, Ty 2 Ty ZTs

a Y z T4
a 2
=< h =
1 € GSp(6,F)| hy w 1 4y
1 Iy
1
Then
a -z -z} =z, -z, s
1 -1 W =2
_ a -2z 'o—x
v3.Hyzt= £ T easpF) ¢,
1
a -z

1
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and

- 1 - -
i) = @a)Oamag = (4 ) (0 7)
) a -z
(7.19) = Yo(21 4+ ¥1)-X ( ) > , for all hy € H;.
8. The calculations on the subgroup (P4.Ts) and (P;.T,.Tg)

Repeating some calculations done in Sections 4-7, we will get similar results for
the subgroups P4 and (P4.Tg).

Homp, (7, indg® (X))
(7'18) dism Hom(P4.Ts)(eL,weK,l-j_l.{’lJf’o(ﬂ'), indg:"rs) T)

(8'1) = Hom(G2»T4-T6)(eLyo'eK,l-AL,o~\7}’o(0’1))’ indgﬁﬁr‘.’rs) T)
(8.2) dism Hompy, (61,0.6k,1-AL,0-11,7"),  for almost all 5,

where Hy = (P2.T4.Ts)NH;, 01 = Jf(’ljfp(w) and J¥! f’o(al) = ;. Then

Homy, (€L,0.6K,1.AL,0.M}, T)
~Homp, T,.T¢)(OL,0-OK,1-AL0- 71, indﬁ’:'T"Tﬁ’ 7o)
(by the Frobenius reciprocity theorem)
(8.3) ~Homp, 1,1,)(OL,0-Ok,1-AL 0-AK,1.M1, indﬁf:'T"T“) T2)
(84) ~Homp, T, Te)(OL0-OK 1AL 0-Ak,1 . T LT TE g10 (1),

. (P3.T4.T
mdg,: ‘4 6)7'2)

It is true for almost all s.

The next step is to repeat the work on functors and double coset calculations
for the subgroup (P2.T4) = T, in which the subgroup Hs will play the role of
H,.

Explicitly, from the definition of H; and 7 in (7.19),

H, = (Pz.T4.T6) NH,

/ /

a Y Z T4
a z

={ ha| he = 1w € GSp(6,F) ¢,
1 T
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and for all hy € Ha,

i) =) = (% ) (* )

11

(8.5) = Yoly + ¥})-X (a —12) '

We will have similar results for the subgroups Py and (P3.T4.Tg). We recall
TEo(m) = 6,, TENO) = 01, TE(01) = Koy TEH(No) = m1, and T(m) =
£&1. So far, we have proved

Homep, (, indg® (¥.X))
- Hom(Pg.T4.T6)(eL,o-@K,l-AL,o-AK,l-JE(’l Lo gKd gLo(x),
(by (8.4)) ind{p> T+ Te 1)
o Homp, 1,T¢)(OL,0-OK,1.AL 0-Ak 1. T+ T2 (1)
(8.6) — HomHa (eL,o.@K,l.AL,o.AKJ.Ei, Tg),

. (Pz .T4 .T'G)
, de2 T2)

where H3 = (PO.T‘Z.T4.T6) NH,. Then

Hompy, (OL,0.0x,1.AL,0-AK,1.61, T2)
~ Homp, 1,.1,.T¢)(OL,0-OK,1-AL 0-AK,1-(01.61), in
~ Hom(Po.Tz.T4.T6)(GL,o-ex,l-AL,o-AK,l-91.73JE{’IJE’OJE(’IJE"O(W),

(8.7) indg’;'TZ’T"T“) 73),

(P,.T2.T4.T¢)
st ’I"3)

for almost all s. By the definition of Hy and 73 in (8.5), we have

H; = (Po.Tz.T4.T6) NH,
1 & 24 2z z, x5

1 n FA 7
1
= hg| hg = - :2 € GSp(6,F)
1 3
1

Let us denote its character 73 = 5. Then for all hz € H3,

88 nr=v (7 T (* T)=wmrwx (P 7).

3]
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We can observe (P,.T2.T4.Ts) = N, which is the maximal unipotent subgroup
of GSp(6,F) consisting of matrices of the form

1 xp * x% *

1 Yy * *

_ 1 u *  *
" Iy o+ |’

1 I

1

and
(O1.0-0K 1. AL o-Ak,1.) (1) = Yo(z1 + 11 + v) & Un(n).

From the definitions of 72, 75!, 7%°, 75!, 75° which were used in Sections 7
and 8, we can observe that J1 75! 7% 7% 719(x) is a representation of the
subgroup P, = 1, hence it is simply a trivial representation. Thus, from (8.7),

Homp, (7, indg,% (1.x))
s Hom (Un J2 T T2 TEA 722 indlE, )

(8.9) ~ Homp, (Un.J T¥ gL gE1 T °(x),15), for almost all s,

where 73, defined in (8.8), is a character of Hg, since x is just a character of B

which is the subgroup of By, consisting of matrices of the form b; = (* I) in

GL(2,F). (Recall Section 2.) Because of the uniqueness of the Whittaker model,
the space Homy, (¥n.J2 K.l gL 7K 1 E"°(1r), 73) is at most one-dimensional.

Thus, for almost all s in the complex plane, the space Homp, (, indgj (¥.x))
is at most one-dimensional. This conclusion will complete the proof of state-
ment (2.5) and of Theorem 1, when we finish proving Proposition I (stated in

Section 5).

9. The proof of Proposition 1

The symplectic group GSp(6,F) is a closed subgroup of the group GL(6,F)
which is totally disconnected and locally compact. Therefore, GSp(6, F) itself is
also a totally disconnected and locally compact group.

We will be able to use some results stated and proved in chapter I of [B,Z].
Here, we demonstrate only the proof of part 4 of the proposition:
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For all representations 0, € Alg(G4.T6,0L,), 01 € Alg(S4.T6,0L,1), and
7 € Alg(Pg), let us consider the homomorphisms:

[02 T — j_{“ojf’o(ﬂ'); [;: Jf,oj}.ﬁo(ao) — 007
b JENTEN ) — w60 — TENTPN(8y).
Then ¢!, and ¢ are isomorphisms, and £, and ¢y form an exact short sequence:

(9.1) 0 — JElgh () L r Lo gEegho(r) — 0.

Proof: The homomorphisms ¢, and ¢, are well-defined. Indeed, ¢; corresponds
to the identity (S4.Tg)-homomorphism J='(r) — J%'(r) and £, corresponds
to the identity Pg-homomorphism Ji"l 61) — Ji"l(el) in (5.1). Similarly, ¢,
and ¢, correspond to the identity (G4.T)-homomorphisms J%°(x) — J%°(x)
and the identity Pg-homomorphism J;*°(6,) — J°(8,) in (5.2). And ¢, and
¢} are isomorphisms.

Now, the main problem is to prove that sequence (9.1) is exact.
a

o Let g(A) denote an element in G4 of the form [A] , where the
1

matrix [A]4x4 is an element in GSp(4, F). Obviously, u(g(A)) = u({4]) =
a € FX, where u(g) is the similitude factor of g. (Then g(A’) is in S, if

u([A']) = 1.)
Let I(y) be an element in L¢ of the form
10000y
1 0
1 0
1 0
10
1
Then
OLo(l(y)) =1 and Oy:1(l(y)) = ¥o(y)-
We have
(9.2) 9(A™)(y)-9(A) = I(u((A) *9).

We recall that Lg is the central subgroup of Ts. Therefore, the identity (9.2) can

be rewritten as

(9.3) [9(A)-4]721(y).lg(A)-4] = Uu([A]) " y) = U(a™y),
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for all [g(A).t] € (G4.Ts).
¢ We have Lg ~ F, which is a totally disconnected and locally compact
topological space. Then, we can define the sheaves on F by using only a
base B,. of open compact subsets.
Let (m,Ps, V) be a smooth representation. We make V; a C°(F)-module via
Fourier transform f(y) = [ f(x)¥o(zy) dz by
F

(9.4) fov=n(fv,  where n(f)v = / F @) () dy.

F

For all fi, f2 in C(F), v in V;, we have

flov=//fl(x)tl)o(my)w(l(y))vdzdy.
F F

Then (fy.fa)ev = fre(foev). Therefore, V; is a C°(F)-module.

Since V; is a smooth Pg-module, hence it is also a cosmooth C°(F)-module,
Le. for any v in V,, there exists some open compact subset K of F such that
1 ev = v, where 1x is some characteristic function of K. Then the action can
also be extended to make V, a C*°(F)-module via 7/, which is defined by

(9.5) 7' (f)v=n(f1g)v, forall f in C=(F).

o We want to construct the sheaf F of these modules.

For all open compact subsets U of F, let F(U) = {v € Vy|lyev = v}. If
W C U, we define a restriction map py,w: f’(U) — .7?(W) by puw(v) = lwev.
Then F is a presheaf.

Let F be the sheaf associated with the presheaf F. Then F(U) = F(U) when
U is an open compact subset.

Now, we use the result of exercise 1.19, chapter II in [H], where the closed
subspace Z = {0} and the open subspace Y = F \ Z = FX. Let F’ be the sheaf
associated with the presheaf F', where

., [FU), if0gU,
HU)"{O, ifoeU.

We also define the skyscraper sheaf F” as

1" _JFe, if 0€U,
]:(U)—{O, if 0¢U.
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Their stalks can be expressed as

96) Fl=F.=F, Fl=0 ifc#0 and Fo=Fy=0, Fi=7F,.
Then we have the short exact sequence

(9.7) 0 —F —F—F"—0.

o If a is in F*, we can consider a topological automorphism (in fact, a
homeomorphism) a: F* — Aut(F), defined as: a(a)(z) = az for all
in F.
Now we consider the action of g(A) on F. For all f in C°(F),

fon(g(A))o = / / £ (@)olay) (1) (a(A))vdz dy

F F

= //f(x)wo(xy)ﬂ(g(A))ﬂ'(l(a‘ly))v drdy (by the identity (9.2)).

F F

1

We may make a change of variables y — ay, r — a™ "

for(a(A)w = n(g(4)) / / F(a™ 2)po(ey)n(1(y) v dz dy.

F F

Let us define f,(x) = f(az). Then we can write this result as
form(g(A))v = n(g(A))(fo-1ev) for all vin V.

This expression is independent of matrix [A] in g(A). Therefore, it makes sense
to denote I1, = 1(g(A)). Then we may rewrite that expression as

(9.8) faollv =, (fev) for all v in V.

We will now show that this expression implies that F’ is isomorphic to a constant
sheaf F; on F* extended by zero to a sheaf on F. Indeed, let us observe

faz) =1 <= az=a(a)(z) €U <= z€a Worreala )l
Then f =1y <> fo = la@-1)y. Using these functions in (9.8), we have

v = o (ly.w) = 1oe-1ypllav, for all v in F(U).
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Therefore, II,v € F(a(a~!)U). In other words, II,-1 induces an isomorphism
between F(U) « F(a(a)U).

On stalks, it also induces an isomorphism (denoted the same) which acts
transitively on the stalks:

(9.9) M,-1: Fp — Fue for all x in F*.

Therefore, all the stalks are isomorphic. Then by (9.6), F, = F, ~ For = F...
¢ We will prove that 7’ and F” are flasque sheaves.

First, we check that the sheaf F is flasque. That is, when W C U, we prove
that the restriction map pyw: F(U) — F(W) defined by pyw(v) = lwev is
surjective.

It is obvious, since for all v in F (W), we have lyyev = v, 50 1lyev = (1y.1w)ev =
lwev = v. Then v is in F(U), too. Therefore, the restriction map prw(v) =
lwev = v is surjective. Thus F is a flasque sheaf. Then we can embed F(W) C
F(U) as subspaces of V.

From the definition of 7 in (9.6), we have F'(U) = F(U) for all open compact
subsets U # 0. In general,

F(U) =

{sections Sin F(U),S:U — U F. such that S vanishes at 0if 0 € U}.
a€l

Then S € F/(U) implies S € F'(U’) for some U' C U and 0 ¢ U’. But F'(U’) C
F'(U), therefore, F'(U) = F'(U'). Hence we may assume 0 ¢ U. Then F'(U) =
F(U) for all U. Therefore, 7' is flasque.

In the exact sequence (9.7), both F and F' are flasque sheaves, hence F” is
also a flasque sheaf (exercise 1.16, chapter II, in [H]). Now we need some lemmas.

LEMMA 9.1:. The following are equivalent:
- vE V(Ls, @L,o),

- lyev = 0, for some open compact subset U containing 0.
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Proof:  The Fourier transform of 1~ is const.1,-~. Then

1lyev = 0, for some open compact subset U containing 0,

< lgnev =0, for some n <= const.l,-nev =0

= / m(l(y))vdy. We may make a change of variable n — —n
"

= [rypas= [erLa0wimtwway
o™ P"

v E V(Ls, eL,o)
(by a lemma of Jacquet-Langlands, stated in section 2.33 of [B,Z]). |

LEMMA 9.2: The Stalk at 0: Fy = Vp/V(Le,OL,), where V(Lg,OL,) =
{((m(l)v — v), for all v in V. and l in Lg). That is,

(9.10) Fo=JE(m) = Ty° T2 ().

Proof: By definition, Fp is the direct limit of the groups F(U) for all open
compact subsets U containing 0, via the restriction maps. We denote by Fy =

lim  F(U).
— U30
To prove this limit is V. /V(Ls, ©,), we need to check two conditions:

(1] Define 1y: F(U) — V,/V(Le, OL,0) by 7y = Proj o Incl, where Incl is an
inclusion mapping and Proj is a projection mapping defined naturally as

7o) 2 v P vy, o).
For all v in F(U), and W C U, we must check 7/(v) = 7w o pyw (v). Indeed,

lwo(v - pU,W(’U)) = lwov - I%Vov = 0.

Therefore, by Lemma 9.1, we have (v — pyw(v)) € V(Le,OL,). Thus
1v(v — pu,w(v)) = 0. In other words,

Ty(v) = v (puw () = Tw (oUW (v)).

[2] Next, we check this condition:
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If there exists a vector space T and ny: F(U) — T are vector space homo-
morphisms for all open compact subsets U such that this diagram

F(U) FW)

\/

is commutative. Then there exists uniquely a homomorphism n: Fo — T such

that for all U, we have ny =noTy.

Indeed, given v in both F(U) and F (W), where U, W both contain 0, it suffices
to prove that iy (v) = nw (v). Indeed, we consider the restriction map

puuw,u: FUUW) — F(U).

It is not isomorphic, but if v € F(U) then v € F(U U W) and pyuw,u(v) = v.
Therefore, this commutative diagram

UUW PUUWU

,,,,Ux a

implies that
nu(v) = v © puuw,w (v) = nuuw (v)-

Then, by symmetry,
mu (v) = nw (v)(= nuuw (v)).

THE UNIQUENESS: If there exists another homomorphism 7': F — T such
that, for all U, we have ny = ' o 77, then we will prove n = 7. For all v in o,
there exists wy in F(U) such that 7y (wy) = v. Hence

7' (v) =7 o1y(wy) = nu(wy) = no 1w(wy) = n(v).

Thus 7/ = 1. ]
LEMMA 9.3: The Stalk at 1: Fy = V/V(L¢,©OL,1) where

V(Le,BL,1) = ((x(l)v — ©r1(1)v), for all v in V, and | in Lg) .
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That is,

(9.11) Fi = T (x) is an (84.T¢)-module.

Proof: By definition, F; is the direct limit of the groups F(U) for all open
compact subsets U containing 1, via the restriction maps. We denote F; =
lim  F(U). The proof is similar to that of Lemma 9.2, except that we will use
tHeL;(a)lllowing lemma in place of Lemma 9.1. 1

LEMMA 9.4: The following are equivalent:
- v € V(Lg,OL,1),
— 1yev = 0, for some open compact subset U containing 1.

Proof: Let F, be the Fourier transform of the characteristic function 1y ny.
Then

Fo(z) = / Yolzy) dy = / Yole(1 +9)) dy

(1+p™)

— 4, () / bolew) dy = Yo(2) / 1 (4)o(z) dy.

F

Therefore, Fy,(x) = 9,(x).1,-x/vol(p~™"). Then

1yev = 0, for some open compact subset U containing 1
<= 1(14pn)-v = 0 for some n large

<= F,.v = 0 for some n large

= (1/vol(p™)) / 1 ()0(u)7(L(y) ) dy = 0.
F

We may make a change of variable n — —n,

= (1/v0l(6") [ 10 (0ol vdy =0

F

= / Yoly) (1) wdy = 0

- / O (1(y))(i(y) v dy

<= v € V(Lg, Or,1) (by the lemma of Jacquet-Langlands, loc. cit.). 1
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¢ Now we define the space

Fe(U) =

{all locally constant, compactly supported sections S: U — U .’Fa}
aclU

for all compact open subsets U C F*. We could extend any section S to a

function
S Pe(U) — | JFar by S'(g) = S(u(g)) = S(a),
aclU

where pu(g) = a, for some a in U C F* and Pg(U) = {g € Pg|us(g) € U}.
Then, obviously, Pg(F*) is just Pg.
By this definition, if u(g1) = p(ge) then S'(g1) = S'(g2)-
(Conversely, given function §’, for all a in F*, there exists some g = g(4) in
Pg, such that
1(g(A)) = p(4) = a.
Let us define S”(a) = S'((9(A)). Then §" = 5'.)

In the case when U = F*, the following lemma holds.

LEMMA 9.5:

(9.12) FUF*) = TPYF).

Proof: Let § = Jf"l(ﬁ). We will consider this representation (6, (S4.Ks), F1).
Then Ji"l(}'l) is the space of all locally constant and compactly supported
functions ¢: Pg — F;7 such that

(9.13) o(s.t.p) = 6(s.t).o(p), for all (s.t) € (S4.T¢) and p € P
Particularly,
p(l.p) = 8(1)-¢(p) = OL,1(1)-0(p) = Yo(y)-(p),

by assuming ! = [(y) in Le. From (9.9), we can observe an isomorphism between
these two spaces:

(=9

(9.14) - (g) = 1(9)S'(g) = MS'(g) = MuS(a), where a = p(g).
d.

(9.15) - 8(a) = 5'(9(A)) ¥ 7(g(A) " )p(g(A)) = -1 p(g(A)),
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where g = g(A) is in Pg, such that u(g(A4)) = a, and we define II,-1 = 7(g(A4)71),
such that the obvious conditions

Ha o Ha-l = id]:l and Ha~1 o Ha = id]:a

could be satisfied (where I1,: F, ~— F1, ll;-1: F; — F,). We need to check
the compatibility of IT, with the group action on these two subspaces F, and F.
First, we can generalize Lemma 9.3 to get the stalk F,, for some a € F*:

F, lim F(U) = Vz/V(Le, OL 1, a),

Usa
where
V(Le.Or.1,a) = (7({(y))v — On1(l(a.y))v), for all v in V,l in Lg) .
Then V(L. O13,1) = V(Lg,Op,1). For all w € V(Lg, O1,1,0),

I, (w) =7(g(A))[x(l(y))v — Or 1 (a.y))v] for some v € Vi, I(y) € Lg,
=n(l(a.y))m(g(A))v - Or,1(l{a.y)).7(g(A))v) (by (9.3)).

Let I'(y) = I{(a.y). When y runs through F*, I'(y) runs through Ls. Let o' =
m(g(A))v. Then

M, (w) = [r(I'(y))v" — Or1(I'(y))v'] € V(Lg, Or,1-

Thus it makes sense to write

00— V(LG, @L,l,a) Vﬂ- > ]:a 0
lna lna lna
0 —— V(L¢,Or,1) Va ~ Fi 0.

Now, we need to check two conditions:
[1] For all (s.t) € (S4.T¢) and p € P,

o(s..p) & 1(s.t.)S'(s.t.) = 7(s.0)7(p)S (u(s.£.p)) = 7(5.£)m(p)S(u(p))
= n(st)p(p) = 8(s.)p(p) = T (x)(s.8)p(p) (since p(s.t) = 1).

The function ¢, which is defined in (9.14), satisfies (9.13).



Vol. 101, 1997 THE SPIN L-FUNCTION 47

Next, we check that S(a), which is defined in (9.15), is a section in F.(U). We
have p(g(A)) € Fy, hence S(a) def II,-10(g(A)) is in F,.
Let some set {U;} C B, be a cover of U. For all U;, we consider the section
S; € F.(U;) where
Fe(U;) =
{locally constant and compactly supported sections S: U; — U fa}.
aclU
Then S;(a) = S(a) for all a € U;. Therefore, py, (Si) = Si(a) = S(a) for all
Ui’s.
[2] The smoothness of V,; implies these two equivalent conditions:

S is locally constant section <= ¢ is locally constant function.

All the above arguments allow us to conclude J}_"l(]ﬁ) = FL(F*). |

Therefore, this lemma and Lemma 9.3 will give us F.(F*) = 7' 7™ (). By
extending F/(F*) trivially to 0, we have

(9.16) FUF) = JO T2 (n).

Let
Fo, Hf0€EU,

riw) = {o, ifOgU.

By Lemma 11.5, we have
(9.17) FI(F) = Fo = Ty T4 ().

We define F.(U") = Uycur F(U), where the union is over open compact subsets
U. Then
F@ = FO)={ FO).

UCF UCF
By the cosmoothness of V, for any v in V;, there exists some open compact
subset K of F, such that 1xev = v, or v € F(K) = F(K). Therefore,
(9.18) U FO) =V, = 7).
UCF
From (9.7), the short sequence 0 — F' — F — F” — 0 is exact. We
proved F' is flasque, hence by exercise 1.16, chapter II in [H], the sequence

(9.19) 0 — F'(F) 25 F(F) 25 F/(F) — 0

is exact, too. Let A} = hy|z/(r) and hy = ha|x (r). Then the next lemma holds.
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LEMMA 9.6: The following short sequence is exact:

(9.20) 0 — FL(F) 2 F(F) 22 2 (F) — 0.

Proof: We need to check some conditions:
- hi: F'(F) — F(F) is injective. Ker(h}) C Ker(h;) =0. Thus Ker(h}) = 0.
Hence h}: F.(F) — F.(F) is injective.
— The exactness in (9.19) gives us hy(F’(F)) = 0. By the definition of hj, we
have hy(FL(F)) = ho(FL(F)) C ho(F'(F)) = 0. Therefore, hy(F.(F)) = 0.
— The last condition: hj is surjective. For all T in F/ (F) = F"(F), since hy
is surjective, there exists an S in F(F) such that h2(S) = T. We can choose
S to be compactly supported. Indeed, consider some section S in F.(F);
then (S.S;) is a compactly supported section in F.(F). By the definition
of hj,

hé(SSl) = hy(S.81) = ha(S)+ha(S)) = hz(S)-l—hg(Sl) =T+0=T. [

Finally, from (9.16), (9.17), (9.18) and (9.20), we can write

0— Jf’ljf’l(w) — T — ji"ojf’a(ﬂ') — 0.

10. The local functional equation

It will be helpful to modify our notations slightly to emphasize local calculations
in this section and for the rest of this paper.

Let F be the global field, and F, be a non-archimedean local field equipped
with its ring of integers O,. The residue field has the order N, = q.

Let By, = B3(F,) be the Borel subgroup of GL;, = GL(2,F,). Let
(ps) GLy, V,,) = indg, " 8%, and (p1-s, GLoy, V,,_,) = indg, > 65° .

Let (m,,GSp(6,F,),Vs,) be an irreducible, smooth and generic cuspidal
representation as in Theorem 1. We identify the space V; with its Whittaker
model W, _.

We now rephrase Theorem 1 in a simpler case.

COROLLARY 10.1: For almost all s in the complex plane, there exists at most one
non-trivial GLg ,-invariant bilinear form on V, xV,_, up to a constant multiple.
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G

. 1GLy, .
In other words, the space HomGL“(‘fr,,,lnde’v 0p,,) is at most one-

dimensional, for almost all s in the complex plane.

Proof: Let

describe an embedding i: GLy, — GSp(6,F,). Then the bilinear form B in
(1.1) satisfies

Br(i(g))v, p(g)w} = B(v,w), forallveV, ,weV, and g€ GLj,,.

Thus B is invariant under the action of GLg,. Theorem 1 gives the uniqueness

of this bilinear form on V;, x V,_. ]

Let (g be the Dedekind zeta function of the global field F. Then (¢ =[], CF,,
where (p,(s) = (1 — N;*)~! = (1 —¢;%)"! at the non-archimedean places and
are normalized gamma functions at the archimedean places.

We recall the definition of the integral Z,(s, Wy, fs ), where W,, € W, and
fsw € Vp,, in [B,G]:

ZU(S, W, fs,v) =
a
a

@) [ [ Wv[ o 47i(g)

B;3,.\GLy,, FX F2 —u 1
1
(10.1) « Jal*3.f, o(g) dz dud* a dg,

where v = 3 (defined in Section 7). Then Z,(s, Wy, fs ) is convergent for
sufficiently large R(s).

PROPOSITION 10.2: Let F,, be a non-archimedean local field whose residue field
is of cardinality q. Then the integral Z,(s, W, fs ) defines a rational function of
variable ¢~*. Hence, particularly, Z, (s, Wy, fs ) has a meromorphic continuation
to all s.

Proof: Let Zy(s, Wy, fsn) = Zy(s, Wy, fs.0)/Cr,(28). Then, obviously, we need
to prove only that Z, (8, Wy, fs,») is a rational function of ¢~*.
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GLZu(s
Bs,

Let Y denote the tensor product space V;, & ind . Then the action

I's of GLy,, on Y can be described as

(10.2) I(g)y = Is(9) (W @ fo0) = m(i(g))We @ ps(g)(fs.0)-

GLz * g, ., in Corollary

Thus the uniqueness of the bilinear form on V;, x indg
10.1 can be translated into the uniqueness of the hnear form onY =V, ®
1ndBLz " Og, - Let T(y) =Ts(W, ® fs0) def Z4(8,W,, fs.v). Then we can check

that
Ts(rs(g)y) - Zvv(s,ﬂ-(i(g)) mﬂs( )fs v) Zv(sw W, fs,u) - Ts(y)

by Proposition 10.4, which will be proved later.

There exist some function ¢, and Whittaker function W satisfying
(10.2a) Zy(s, W2, f2,) = 1.

That is, T5(y°) = To(W? @ f2,) = 1. Therefore, for all but finitely many s (or

q~—°) there is a unique non-trivial linear functional T;: ¥ — C such that
(10.3) T(Is(9)y—y)= 0 and T,(WJ®f;,)=1

From this setup, we now can follow the ideas used to prove Proposition 10.3 in
[G,PS].

Let D be a multiplicative subgroup of C which is regarded as an irreducible
algebraic variety over C. By parametrizing z in D by z = ¢™°, we have the ring
of polynomials C[D] = C[z, 27| = Clg*, ¢ %]

Let D be the subset of D such that (10.3) has a unique solution for all ¢=% in
D;. (Hence D; is nonempty and open.)

We now view the equations in (10.3) as a family of systems of equations for the
dual space Y* = Homg (Y, C) by considering the collection =, of pairs {(Is(g;)y; —
y;,0); (y°, 1)} indexed by some countable index set T = {(4, j)}, for all ¢=° in D,
(since Y has a countable dimension over C). Then the system Z, has the unique
solution T, in Y™* for each ¢—* in D;.

By definition in [Be|, the family {Z;} is polynomial in ¢~ since all systems
2, are indexed by the same set Z and since, for each (i,7), (Is(g:)y; — y;) is
in Y, which is embedded in Y ® Clg°,¢~°]. Hence it is polynomial in ¢~°
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Thus Bernstein’s theorem (in [Be]) implies the existence of a linear functional
T:Y ®L — L, where L is the field of fractions of C[D], and T(y @ ¢~*) = T,(y)
for all y in Y, and all ¢7° in D,. Therefore, T; is a rational function of variable
g% and so are Z,(s, W, fs o) and Zy,(s, W, fs)- 1

The immediate result of Corollary 10.1 is local functional equation.
Let M ,: indg;?” (5532‘v -— indg:f‘” 6,13;‘1 be a normalized intertwining

operator defined as

(Ms,ufs,v)(g)=ﬁv/fs,v<(1 ‘1>.(1 f).g>dx

for all fs, in V, . This proves that V,,, ~V,, _  (Jacquet-Langlands’ theorem).

ProprosITION 10.3 (The local functional equation): Assume that F, is a non-
archimedean local field whose residue cardinality is q. Then there exists a mero-

morphic function v,(s) such that, for almost all s,

(10.4) Zo(8, Wy, fsw) = 70(8).Zu(1 = 8, Wy, Ms 1 fs.0)-

In fact, v,(s) Is a rational function of ¢™°.

Proof: Let us denote f~1_s,v = M, fs- Since both integrals Z, (s, W, fs ) and
Zy(1—38,W,, f]-s,v) are GLg .-invariant bilinear forms on V; xV, ~ V; xV, |
Corollary 10.1 asserts that there exists a factor v, = 7,(s) such that (10.4) could
be satisfied.

It is a meromorphic function and, moreover, a rational function of ¢—*, because

the integral Z, is also, by Proposition 10.2 above. |
¢ By (10.2a) in the proof of Proposition 10.2, it remains to prove the following:

PROPOSITION 10.4: For any non-archimedean local place v, there exist a

Whittaker function W) € Wy, and a function f, € indg:'j’” 0h, , such that

Zy(s, W, ;”v) =1.

Proof: We denote K,, = GL(2, 0,), the maximum compact subgroup of GL3,,
and observe that By ,\GL3,, N K,)\K,. Then we can rewrite the integral:

Zv(s, Wv» fs,v) = Zv(37 Wm fs,v)/CF‘, (25)
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a
a
_ a -1 13
= / //Wv[ u 2 1 AT A(k)
(B2,,NK, \K. F F2 —-u 1
1
(10.5) x |a|* 3. fo o (k)dz dud* a dk.

¢ STEP 1:  Let S(F,) be the set of all Schwartz functionsvon F¥,,, »: F, — C.
There is some Whittaker function Wi in W, such that Wi(1) # 0, and then
it can be normalized to Wi(1) = 1.

e STEP 2: Let us define a function A;(a) = W;(diag(a,a,a,1,1,1)). Then
Ai(1) = 1. Suppose a Schwartz function v; in S(F,) is chosen such that its
Fourier transform, defined by #1(a) = fFv v1(z).¥o(a.x) dz (which is also a
Schwartz function in S(F,)), is supported on a sufficiently small neighborhood
of 1in OF, and [,x #1(a).Ar(a)d*a=1.

We define a Whittaker function Wy in Wy by

1
1
1
108 Wile)= [n@t . W1)(9) de.
F, 1
1
Then
/Wz(diag(a,a,a,1,1,1)).)a]s'3dxa
F
a 1
a 1
_ n(z).W a 1 =
= 1\Z). W1 1 1
F)Fs 1 1
1 1
X IaI"3 drd*a
1 a
1 a
1
://Vl(x)Wl[ all' a 1 ]
FF, 1 1
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x |a]*~2dz d*a

=//V1($)-¢o(a.$).W1(diag(a,a,a,1,1,1))_|a|s—3dxa

FXF,
(10.7) =/ﬁ1(a).A1(a).]a|s_3dxa= /Dl(a).Al(a) d*a=1.
F} o)

e STEP 3: Let

Az(z)=/W2 ° a3 d%a.
Fx

1

Then by (10.7) we have A3(0) = 1. Suppose that vy: F, — C is a Schwartz
function in S(F,) which is chosen such that its Fourier transform, defined by
Do(z) = wa vo(x).Yo(z.x) dz, is supported on a sufficiently small neighborhood
of 0, and [g #5(2).A2(2)dz =1.

We define a Whittaker function W3 in Wy by

1
1 -z
1
108 Wile)= [ul). | A
F, 1
1
Then
a
a
(10.9) //W3 Z 1 .|a|s—3dxadz=/ﬁ2(z).A2(z)dz=1.
FX F, 1 F,
1
o STEP 4: Let
a
a
A3(’u)=/ /W3 u : 1 .{als_3dzdxa.
FJ
F. —u 1



54 SAN CAO VO Isr. J. Math.

Then by (10.9) we have A3(0) = 1. Suppose that v3: F, — C is a Schwartz
function in S(F L) which is chosen such that its Fourier transform, defined by
fF v3(x).4o(u.2) dx, is supported on a sufficiently small neighborhood
of 0, and Je, P3(u).As(w) du = 1.
We define a Whittaker function Wy in Wy by

1
1 x
1

(10.10) W4(g):/1/3(;r). p ] W3 | (g)dx.

F, 1

1
Then
(10.11)
a
a

///W u ? ] .[als“?’dxadudz:/173(u).A3(u)du:1.
Fy ¥ —u 1 F.

1
e STEP 5: Recall the representation p which acts by right translation on the
Whittaker space W, . Let Wy be a Whittaker function in W, such that Wy =
p(7)W4, hence we have Wy = p(y~!)W;5. Then (10.11) becomes

a
a
(10.12) ///Ws [ u il 1 ~’Y_1] Ja*3d*adudz = 1.
FyFy —u 1
1
e STEP 6: Let us define a subgroup of K,,
Kv(@N) =
{ (g Z) € K,, where ¢ = 0 (mod p") for some sufficiently large N }

Then (B3 ,NK,) C K,(p"), obviously. We choose a function f¢, which satisfies

L[ 5)-(5 )
(10.13) %,. ( / ;;) = v1/321°, if(‘j Z) € Ku(o"),

o, (¢ h) ¢x, o).
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L

. Lo . 1GLa,
Then f¢, is a smooth function in the space indg,”" d3, . Hence

(10‘14) ;) (1}) — { 1 if ke KU(EON), or ]‘;) c (BQ,U ﬂKv)\KU(pN)’
v 0 otherwise.

Then recalling (10.5), for any Whittaker function W}, in W;_, we have

a
a
- ° _ a —1 /7
Zv(s,Wh,fs’v)_ / //Wh[ u 2 1 Ko’ .1(k)]
(B2,."K. )\K, FX F} —u 1
1
x [af*=3.£2 (k) dzdud* a dk
a
a
. o1 a ~1
-[[ ] (p(l(k))vm[ Y A ]
F:,( F% (BE,vnKU)\Kv(PN) U 1
1
(10.15) x |a]* =% dz dud* a dk.

e STEP 7: Using the Iwahori factorization, we have
(By, N K, )\K,(pV) > { (i 1) € K,,such that ¢ = 0 (mod goN)}.
Then for any Wy, in Wy,
(oG (k)W) df = / (o [i (i 1) ]Wh) de=q=N Wi,
(B2,o K )\K, (o) ce N

if N is chosen sufficiently large, since W}, is locally constant. Take W, = ¢V.Ws,
where Wy was defined in step 5 above. Then

(10.16) / (o(G(R)) W) dF = W
(B2,: MK, )\Kq (p7)
Thus the integral in (10.15) is equal to that in (10.12).

Let W2 = Wj. Then Z,(s,W2,f2,) = 1. It completes the proof of
Propositions 10.4 and 10.2. |
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CHAPTER II:. THE POLES OF THE GLOBAL SPIN L-FUNCTION

11. Meromorphic continuation of the integral Z,(s,W,,f,,) at

archimedean places

We will prove a proposition which will play the role of Proposition 10.2 for
archimedean places.

Let F, be an archimedean local field. The maximum compact subgroup K,
is O(2,R) or U(2,C), depending on F, being a real field R or complex field C,
respectively.

ProPOsITION 11.1 (Meromorphic continuation of Z,,(s, W,,, fs ) at archimedean
places): The integral Z,(s, Wy, fs.), which is defined in (10.5),

a
a
— a —1 s/%
Zy(8, Wy, fon) = / //Wv [ u oz 1 ~TA(K)
(B2,.NK.)\K, F F3 —u 1
1
(11.1) x |a|*~3.f, (k) dz dud* a dk,

converges for sufficiently large R(s) and has a meromorphic continuation to all s.
To prove Proposition 11.1, we need to estimate the Whittaker functions W,,.

e PART A: ESTIMATES FOR THE WHITTAKER FUNCTIONS. We
will consider some subgroups of GSp(6, F,). Let Kg ,, be the maximum compact
subgroup and N, be the unipotent radical subgroup. We define the character
¥, on N, as in Section 10.F.

Let 0, be the module of the Borel subgroup Bs, and D, be the subgroup
consisting of all diagonal matrices of the form

Yo¥Y1Y2Y3
YolY1Y2
Yoln

(112) a(yoay11y2vy3) = ’
Yo i
Yoliz -1, -1
YolYa U3
where all y; € F,.. Let Ep be a finite set of characters X of D,. Each character

X has the form
3

(11.3) X (a(Yo 1, y2,¥3) = [ [ Xilwa)lwsl™,
=0
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where X; is a character of module one and n; is real.
Let E be the set of finite functions Y on Fi. Then each function Y(a) is a

finite linear combination of functions of the form
3

(11.4) X (a(Yo, y1, 2, ¥3))- | [ log™ 151,
j=1

where m;’s are positive integers. Then E is also a finite set.

PROPOSITION 11.2: For every Whittaker function W, in W, _, there exist Schwartz
functions ¥,’s in S(F3 x Kg ,) such that

(11.5) W,(n.ak) = Un, (n).0g (a). Y Wiy, 2, y3:k).Yi(a),
Y:eE!
where a = a(yo, ¥1,¥2,¥3) € Dy, k€ Kg, andn € N,,.
Proof: The proof is the same as in [S] which was inspired by those works in

[J,8.1], [J,S.2] and {J,PS,S]. |

¢ PArT B: PROOF OF PROPOSITION 11.1. By the Iwasawa decomposi-
tion, we have the following identity:

a 10 0 O 0
a 1 ¢ = 0
a _ 1 ¢ 0
u z 1 - 1 ¢ O
—-u 1 1 0
1 1
(11.6) .diag(a,ad,aA,A71,671 1) .k
(11.7) =n(a,u,z).a(A"1, A%, 6A71 57 Y) k,

for some k € Kg 4,
(118) ci = —zu/(1+4?), c2=za/[2® + (1 +4?)?,
§=01+u?)"Y2 and A=(01+u?+[22/(01+ u2)])"1/2.

Let k, = k.y~Li(k); then k, is in K¢, since both v~ and i(k) are in K ,.
Applying the identity in (11.7) to Proposition 11.2, we have

a
a
a —1 /7
W, v z 1 y~i(k)
—U 1

1
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=W, (n(a, u, z).a(A71 A%, 5A"1,5“1).k.7'1.i(l})>

= Uy, (n(a,'u,z)).dg/:(a). Z [\I/i(yl,yg,yg;kv)
Y:€E
M 3

(11.9) X Z <Xo(yo)“yo‘no‘i. H [Xj(yj)-}yj!nj‘i' mj;

=1 ji=1

)

(where y, = A7L, y = A2%q, y; = §A7!, y3 = §71; and for the next
step, we use a simple arithmetic formula: the power log™ |a.b]| is a finite linear
combination of products of the form (log™* |al. log™? |bl), with all positive integers

my + my =m)

3
= lIle(n(a,u,z)).élg/:(a). Z (\Ili(yl,yg,yg;kw).|a|a1.|A\a2.15|“3.HXl(yl)
Vel l=o0
(11.10) xS Cplog™ |al. log™ | Al log® ;51),
(B1.82.53)

where all f;’s are positive integers and both ) ’s are finite sums. Then the
integral Z,(s, Wy, fs») in (11.1) is a finite linear combination of terms of the

form

Yj(s):/ / //\I’N )51/2(3) U;(y1,y2, ysi ky)

Ks.» (Bs,,NK,)\K, FX F2
3
x HXl(yl).|a|s+"‘.}A|“2.|(5i°‘3.logﬁ‘ |a]. log”? |A. log™® 18]
=0

(11.11) X fo(k)dzdud*adkdk

where, for n(a,u, z) expressed in (11.6)-(11.8), we have

—2ZU za )

(1112) \Ile(n(aau’z)):wo(1+u2 + 22+(1+u2)2

where we defined v,(z) = e2"™®®) for archimedean places. Now 6,13/6 *(a) is of
the form |a|*1.|A|*2.|6|%, where R(c/,) > 0. Thus it can be absorbed into this
product:

3
Ej(a,u, 2ky) = U(y1, y2. 935 ko). [ ] Xi)-lal [ A]%2.|6]°2. Tog™ | A Jog™ |6},

l=o
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where y; = aA?, yo =6A7  and y3 = 6L

From the expressions of § and A in (11.8), it is not difficult to observe that
Zi(a,u, z; k) is still a Schwartz function. Therefore, we can simplify the expres-
sion of Yj(s) to

Yi(s) = Un, (n(a,u, 2)).Z;(a, u, 2; ky)
[ ]l

Kﬁ,u (Bz,vﬂK \K Fx F2

(11.13) x |a)*. log? |alfs . (k )]d,.dudxadkdk

Therefore, in order to prove the convergence and meromorphic continuation of
the integral Z,(s, Wy, fsu) = Zjej Y;(s), where J is some finite index set, it
suffices to prove those properties of integrals of each summand Y;(s).

We recall that k., = k.'y‘l.i(ic) and k runs in some subset K’ of the subgroup
Ks,,. For fixed a,u, 2, s,

Ix :/ / }Ej(a,u,z,k )-foof )\dkdk

K’ (B2,.NK,)\K,

</ |

K6 v (BZ unK

= [a,u, 2 ko LA(R))- fo o (R )ldkdk

The latter integrals converge because they are integrals of smooth functions on
compact domains. Therefore, I also converges to some function Y;(a,u, z; s)
which is still a Schwartz function on F2 of variables a,u, z and a smooth function

of variable s. Then, we rewrite

(11.14) Y;(s ///\IIN n(a,u, 2)).T;(a, u, 2; 5).Jal*. log” |a| dz du d* a,

where [ is a positive integer.

Suppose for definiteness that F,, = R. Then it suffices to consider the integral
of the following form:
(11.5)

U, (n(a,u,2)).T;(a,u, z; 5).0°. log’ (a) dz du d*a

v

—2u za
Tra? ' 22 + (1 4+ u?)?

Yo

1l

) T;(a,u, 2 8).0° Llog’(a) dz duda.

=[]l
[]
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(When F,, = C, we can observe easily that all the extra terms and integrals can be
absorbed in the product (Y;(a,u, z;8).a®~1); thus there is no loss of generality.)
Now we partition Y;(s) into two integrals: Y;(s) = Y1(s) + Ya(s), where

1 o0 oo

—zu za s—
///w 1+u2 +(1+u2)2).T]~(a,u,z;s).a 1 1og?(a) dz du da,
000

and

’-‘\8

—zu za s
//w 1 +u2 77 (1+u2)2).Tj(a, u, z; s).a°" L. log? (a) dz du da.
00

Then

|Y2(s) |_/ // i(a,u,2;8). a*~L.log?(a)|. dz duda

converges for all s because the Schwartz function Y;(a, u, 2; s) approaches 0 faster
than any polynomial of variable a, and the integrals w.r.t. variables u and z are
convergent. We also have

1 oo oo
[Yi(s) ///‘T (a,u,zs).a° . log’(a)| dz duda
000

Qj(a)-!&“'ll‘llogﬁ(ﬂt)lda,

1l
o

where Q;(a) is a smooth function of a. This integral converges when R(s) is
sufficiently large. Therefore, Y;(s) is convergent for R(s) sufficiently large.
Now we will prove the existence of a meromorphic continuation of Y1 (s) which

will imply the same for Y;(s). The integral

—zu za
11.
(11.16) //zp a2 z2+(1+u2))T(auzs)dzdu
00

converges to a smooth function G(a). The Taylor expansion near @ = 0 gives us
(11.17)

2

G(a) = Ck a* 4+ R(a), where R(a) = O(a"), for some large N.
0

=
Il
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Then

N-1
(11.18) Yl(s) = Ck.
k=0

o

1
as+k—1. logﬂ (a) da + CN- / as+N—1_ 1ogl3(a) da.
0

By Lemma 11.5 proved below, each term in the right hand side of (11.18) has a
meromorphic continuation to all s, and so do Yi(s) and Y;(s). This completes
the proof of Proposition 11.1. ]

LEMMA 11.5: For any integer 8 > 0, the integral Q(s,8) = fol a*~1.log?(a) da
has a meromorphic continuation to the whole complex plane.

Proof: Integration by parts then gives us

s a=1
(11.19) Q6.8 =L 1g@| -2.q6,8-1.
s a—0 s
We have
a=1 s

R(s,0) = 10 (@)

=lim . log’(a) =0, when R(s) > 1.
a—0 a0 s
Therefore, the continuation of Q(s, 3) will depend on that of Q(s, 3 - 1).

This recursive relationship reduces to proving meromorphic continuation of the
integral Q(s,0) = fol a®~1da, which is already known. |

12. Non-vanishing of the integral Z,(s,W,, fs ) at archimedean places

Now we will prove a proposition which will play the role of Proposition 10.4 for
archimedean places. Let F, be an archimedean local field and K, = O(2,R) or
U(2,C) depending on F, being real R or complex C, respectively.

PROPOSITION 12.1: Let v be an archimedean local place. For any s, fixed,
there exist a Whittaker function W2 € W, and a K,-finite function f7, €
indg:‘j‘" 0B, , such that the meromorphic continuation of the integral

a
a

zswara= [ f /Ws[ LY .7—15(%)]

(B2.vnKv)\Kv F: F?; -~Uu 1
1

(12.1) x |af*=3.£2 (k) dz du d*a dk
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does not vanish at s = s,.
Proof:

e STEP 1: Let S(F,) be the set of all Schwartz functions v: F,, — C.
There is some Whittaker function W; in the space Wy, such that Wy (1) # 0,
and then it can be normalized to W;(1) = L.

e STEP 2: Let A;(a) = W;(diag(a,a,a,1,1,1)). Then
(12:2) A{1)=1.

For any Schwartz function v, in S(F,), its Fourier transform, defined by
v1{e) = fF vi(z).Yo(a.xz) dz, is also a Schwartz function in S(F,). We define a
Whittaker function W5 in W, by

23 W)= [n@e| T [

First, we assume that R(s,) is sufficiently large. Then by the same manipulation

in step 2, Section 12, we can work on the following convergent integral:

/ Wg(diag(a,a,a,l,1,1)).|a|s°'3dxa://V1(:c).wo(a.x).Al(a).|als°_3dxa
FJ

F;F.

(12.4) - / p1(a).A1(a).]Jal** 2 d*a.

FX

CLAIM: We can choose some Schwartz function vy such that the integral (12.4)
does not vanish.

Indeed, if not so, then the integral (12.4) has to be 0 for all Schwartz functions
v in S(F,). It forces Ai(a).Ja|*=3 = 0 for all a. When a = 1, this gives
Ay (1) = W1(1) = 0 which contradicts the result (12.2). Thus, there exists some
function v, such that W, defined in (12.3) satisfies

(12.5) / Wa(diag(a, a,a,1,1,1)).Jal*"> d*a # 0.

FX
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Moreover, we can modify the function v, such that &, approaches 0 rapidly when
a — 0. Then the integrals in (12.4) are convergent for all s,. Therefore, the

result (12.5) is also true for all s,.

o STEP 3: Let

As(z;8,) = /x W, 1 Ja|*~3 d%a.

v

Then by (12.5) we have
(12.6) A2(0;8,) #0, for all s,.

We need the following lemma.

LEMMA 12.2: The function Ay(z; s,) has a meromorphic continuation in variable
s, and, for a fixed s,, it is an analytic function of variable z.

Proof- We can estimate the function Whittaker W5 by the same steps as in
(11.6)—(11.13), with u = 0. Then

Aaeisa) = Y [ o(1255) Bzl ol log” ol d¥a,

J€s7 x

where Z;(a, z; k) is a Schwartz function, and J is some finite index set. There-
fore, A2 is an analytic function of variable z; and the proof of meromorphic
continuation will follow the same arguments as in the proof of Proposition 11.1.
]

Let vo: F, — C be a Schwartz function in S(F,). We define a Whittaker
function W3 in W, by

(27)  Walg) = [ma)ip A O
F, 1
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Then the same manipulation in step 3, Section 12, gives us

a

(12.8) //Wg a4 1 .lals°_3dxadz=/172(2).A2(z;50)dz,

F}F, 1 F,
1

for R(s,) sufficiently large and 7, is the Fourier transform of v, defined by

y(2) = /ug(x).z/)o(z.x) dx.

F,

CLAIM: We can choose some Schwartz function ve such that the integral (12.8)
does not vanish.

Indeed, if not so, the integral (12.8) has to be 0 for all Schwartz functions v,
in S(F,). It forces Ay(2;s,) = 0 for all z. When z = 0, this gives A2(0;s,) =0
which contradicts the result (12.6). Thus, there exists some function v such that
W3 defined in (12.7) satisfies

a

(12.9) / / Ws ‘: . Jaj**~3d*adz # 0.
FX F. 1
1

Moreover, we can modify the function v, such that &, approaches 0 rapidly when
z — oo. Then the integrals in (12.8) are convergent for all s,. Therefore, the
result in (12.9) is also true for all s,.

e STEP 4: Let

a
a

. _ a 8,—3 X
As(u; SO)_/F;‘ /W3 e 2z 1 .la] dzd*a.
F, —u 1

Then by (12.9) we have

(12.10) A3(0;8,) #0, for all s,,.
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LEMMA 12.3: The function As(u; s,) has a meromorphic continuation in variable
S, and, for a fixed s,, it is an analytic function of variable u.

Proof: We can estimate the function Whittaker W3 as in (11.6)-(11.13). Then

—zu za - .
Aa(uiso) = 3 //w" Tta +(1+u2)2)'“7(“’“’ ziky)

JEJFX F,

x |a|**~3.log” |a| dz d* a,

where Z;(a,u, 2;k,) is a Schwartz function and J is some finite index set. Then
As is an analytic function of variable u. The proof of meromorphic continuation
will follow the same arguments as those in the proof of Proposition 11.1. ]

Let v3: F, — C be a Schwartz function in S(F,). We define a Whittaker
function Wy in W, by

1

(12.11) Walg) = ] va(z).(p 1 Wa)(g) dz.
F. 1

1

Then the same manipulation in step 4, Section 12, gives us

(12.12)
a
a
]//W4 u Z 1 .|a|’°‘3dxadudz=/173(u).A3(u;so)du,
FYF.F —u 1 F,

1

for R(s,) sufficiently large and #3 is the Fourier transform of v3, defined by

3(u) = / v3(z).Y,(u.x) dx.

F,

CrAamM: We can choose some Schwartz function vs such that the integral (12.12)
does not vanish.

Indeed, if not so, the integral (12.12) has to be 0 for all Schwartz functions v3
in S(F,). It forces As(u;s,) = 0 for all u. When u = 0, this gives A3(0;s,) =0
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which contradicts the result (12.10). Thus, there exists some function r3 such
that W, defined in (12.11) satisfies

a

a 8o—3 X
(12.13) ///W4 v =z 1 Ja|** 7P d*adudz # 0.

FXF, —u 1
1

Moreover, we can modify the function v; such that 3 approaches 0 rapidly when
u — o0o. Then the integrals in (12.12) are convergent for all s,. Therefore, the

result in (12.13) is also true for all s,.

e STEP 5: Let W5 be a Whittaker function in Wy, such that W5 = p(y)Wy,
hence Wy = p(y~1)W;. Then (12.13) becomes

a
a

(12.14) W5 @ A1 lal® d¥adudz # 0,
u z 1

FYFy —u 1

for all s, in the complex plane.

e STEP 6: We recall the definition of Z, (s, Wy, fs,v) in (12.1):

a
a
— a -1 2/3,
Zv(sm W, fso,v) = / //Wu [ u 5 1 Y l(k)]
(B2,,NK, \K, FX F2 —1 1
1
(12.15) x |a|**3.fs, o (K k) dz dud*a dk.

Now two archimedean places will be considered separately.

Real place: K, = O(2,R). Then

T, = (B2,v nKv) = { (al (12) lal =dl,a2 = i1}7

and Z = {£I} is the center of the subgroup SO(2,R). (I is the 2 x 2 identity
matrix.) Thus

cosf sinf
(Ba,.,NK,)\K, ~ T,\O(2, R) ~ Z\SO(2, R) ~ {( o o 0) ]o <f< 7r}.
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Let
a
a
_ a _1./ cos@ sinf
2(0) = //WS[ v 2z 1 7 'l<—sin0 cos())]
FXF2 —u 1
1
(12.16) x |a|*~% dz dud”a.
Hence by (12.14),
(12.17) 2(0) # 0.

The representation p, which acts by right translation on the space W;_, satisfies

L)

(12.18) 2(0 + 7) = z(6).

Therefore

Thus in the Fourier expansion 2(8) = Y- a,.e""?, we have a, = 0 if n is odd.

Hence there exists some even N such that
(12.19) 0#ay = / e~V 2(6) db.
0

We choose the function f,,, = f2, , which satisfies

o nn oz cosf sinf\]_ _iNoss, (Y1 Z
(12.20) fsm"[( yz) : (—sinO COSG)] =0, ( y2> ’

where N is the even integer in (12.19). Then f; , is a well-defined smooth
function in the space indg:f"’ 63“. Let W, = Ws. Then, from (12.15) and
(12.16), we have

o [ o 0s@ sind
Zuloo Wi 5,0 = [ Fin ( Sonny g ) 2008
0

(12.21) = / e N0 2(0) df = m.an # 0.
0
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Complex place:

K, = U(2,C) = { <_“I_) Z) , (al 02) | laf? + [bf? = 15]a1| = Jas| = 1}.
Let

T, = Baoni) = { ()|l =leal =1},

Then T, is the maximum torus subgroup and
~ ~Ji_[a b 2 2 _
T\K, ~ SU(2,C) =~ {k = (_5 a) \ Jaf? + [bf? = 1}.

The center of SU(2,C) is just Z = {£I}. We define a function z on SU(2,C):
(12.22)

z(k) = /]Ws[ u (zl ] .'y’l.i(l::)] x |a|®*~3 dz du da.
1

We have z(1) # 0. Similar to (12.18), we have 2(—k) = 2(k). Thus z is a
Z-invariant function in the space L2(SU(2,C)).

Let (a;, V,,) be a set of irreducible, finite-dimensional (hence unitary, by a
properly chosen Hermitian inner product in V,,,) representations of SU(2, C) such
that the center Z of SU(2,C) acts trivially.

We can choose an orthonormal basis v%, . .., v}, of V, and consider m? matrix
coefficients of the form of the Hermitian inper product (ai(ic)v;-, v}) in the space
Va,, for all & € SU(2,C).

By the Peter—Weyl theorem, the union of these matrix coefficients over all a;’s
(in fact, only over the equivalent classes of irreducible unitary representations)
forms a complete orthonormal basis for the space L?(SU(2, C)).

We can take a matrix coefficient ¢ which is not orthogonal to z (because, if
otherwise, z must be identical to 0) and also satisfies the same condition as on
function z above: t(—k) = t(k). Then

(12.23) / z(k).t(k) dk # 0.
SU(2,0)
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We choose the function f,, ., = f7, , which satisfies

(12.24) f;’m,,[ (yl ;) k] = t(k).6%, (yl z )

Y2

Then f? , is a well-defined smooth function in the space indg:‘:"” og, - Let us
choose W,, = W5. Recalling (12.15) and (12.22), we have

(12.25)  Zy(s0,Ws, f2 ) = / o (R)z(k) dk = / (F)=(F) dF # 0.

84,V

SU(2,0) SU(2,0)

This completes the proof of Proposition 12.1. 1

13. The location of the poles of Ls(s, 7, spin)

We recall the global spin L-function introduced in Section 0:

(13.1) Ls(s, m,spin) = [ | Lu(s, 7, spin).
vgS

THEOREM 13.1: Let 7 be an irreducible, smooth and generic automorphic
cuspidal representation of the symplectic groups GSp(6,F). The possible poles
of the global spin L-function Lg(s,n,spin) are only simple poles at s = 0 and

s=1.

Proof: For all v ¢ S, by the theorem 1 in [B,G], we have
(13.2) Zy(8, Wy, fs,u) = Ly(s, 1y, spin).
Then

Z(S, W» fs) = H Zv(s’ Wv,fs,v) = H Lv(ss WU’Spin)- H Zv(sa Wv»fs,v)

all v vgS vES

(13.3) =Ls(s,m,spin). [[ Z.(s, Wi, fu),
vES

where f; = [,11,(fs,v), and the Whittaker function W = [],,,, W..
For each non-archimedean local place v € S, Proposition 10.4 allows us to
choose local data W and f, such that Z,y(s, W2, fsy) =1 for all s. Then

Z,(s, W, fou) = (p(28) = (1 - N7*)~ £ 0.
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Similarly, for each archimedean local place v € S, Proposition 12.1 gives us the
choice of local data W and f2, such that, for any s, Z,(s, W2, f7,) # 0.

Thus at each s, we can choose the local data W’s and f?,’s, for all v € S,
such that the finite product [] .5 Z. (s, Wy, f,) does not vanish.

Then, by (13.3), the poles of Lg(s, «,spin) are exactly the poles of the integral
Z(s,W?, &), where

=11 few [1 520 and we=T]w.. []we.

vg€S vES vgS vES

Again, by Theorem 1 in [B,G], the possible poles of Z(s, W°, f7) are only simple
poles at s = 0 and s = 1. Therefore, they are also the possible poles of the global

spin L-function Lg(s, 7, spin). (]
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